首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation is investigated by using the formally variable separation approach. New solutions for the governing equation of this system have been obtained for dust acoustic waves in a dust plasma firsthand. We derive exact mathematical expressions and numerical simulation studies for the general case of the nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation.  相似文献   

2.
The nonlinear dust waves in a magnetized dusty plasma with many different dust grains are analytically investigated. New analytical solutions for the governing equation of this system have been obtained for the dust acoustic waves in a dusty plasma for the first time. We derive exact mathematical expressions for the general case of the nonlinear dust waves in magnetized dusty plasma which contains different dust grains.  相似文献   

3.
In this paper, the nonlinear dust acoustic waves (DAW) in a magnetized dusty plasmas with different dust grains are analytically investigated. New analytical solutions of the governing equation for this system have been obtained for the first time. The exact mathematical expressions of the nonlinear dust waves have been canvassed for the general case in magnetized dusty plasma containing different dust particles.  相似文献   

4.
The formally variable separation approach is used for handling the dust-acoustic solitary waves in a dusty plasma, including consideration of dust charge variation. New analytical solutions of nonlinear waves are formally derived for the governing equation of the system. We have triumphantly derived the exact analytical expressions and some approximate expressions of the nonlinear dust-acoustic waves in a dusty plasma under some special cases. The work introduces entirely new solutions and emphasizes the power of the newly developed method that can be used in problems with identical nonlinearities.  相似文献   

5.
An attempt is made to study variable charge dust acoustic (DA) solitons within the theoretical framework of the Tsallis statistical mechanics. The correct nonextensive ion charging current is presented for the first time based on the orbit motion limited (OML) approach. The variable dust charge is then expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate nonlinear localized DA waves in a charge varying dusty plasma with nonextensive ions more rigorously. Our results reveal that the ion nonextensivity makes the dust acoustic solitary structure more spiky. As the ions deviate from their thermodynamic equilibrium, the dust grain charge becomes least negative and the dust accumulation more effective. In addition, the nonextensive character of the ions contributes to the electron depletion. The latter is more pronounced as the ions evolve far away from their thermal equilibrium. Our results should help in providing a good fit between theoretical and experimental results.  相似文献   

6.
Propagation of two‐dimensional nonlinear ion‐acoustic solitary waves and shocks in a dissipative quantum plasma is analyzed. By applying the reductive perturbation theory, the two‐dimensional ion acoustic solitary waves in a dissipative quantum plasma lead to a nonlinear Kadomtsev–Petviashvili–Burgers (KPB) equation. By implementing extended direct algebraic mapping, extended sech‐tanh, and extended direct algebraic sech methods, the ion solitary traveling wave solutions of the two‐dimensional nonlinear KPB equation are investigated. An analytical as well as numerical solution of the two‐dimensional nonlinear KPB equation is obtained and analyzed with the effects of external electric field and ion pressure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The linear dispersion relation and a modified variable coefficients Korteweg–de Vries (MKdV) equation governing the three-dimensional dust acoustic solitary waves are obtained in inhomogeneous dusty plasmas comprised of negatively charged dust grains of equal radii, Boltzmann distributed electrons and nonthermally distributed ions. The numerical results show that the inhomogeneity, the nonthermal ions, the external magnetic field and the collision have strong influence on the frequency and the nonlinear properties of dust acoustic solitary waves and both dust acoustic solitary holes (soliton with a density dip) and positive solitons (soliton with a density hump) are excited.  相似文献   

8.
In this article, we consider the problem formulation of dust plasmas with positively charge, cold dust fluid with negatively charge, thermal electrons, ionized electrons, and immovable background neutral particles. We obtain the dust‐ion‐acoustic solitary waves (DIASWs) under nonmagnetized collision dusty plasma. By using the reductive perturbation technique, the nonlinear damped Korteweg‐de Vries (D‐KdV) equation is formulated. We found the solutions for nonlinear D‐KdV equation. The constructed solutions represent as bright solitons, dark solitons, kink wave and antikinks wave solitons, and periodic traveling waves. The physical interpretation of constructed solutions is represented by two‐ and three‐dimensional graphically models to understand the physical aspects of various behavior for DIASWs. These investigation prove that proposed techniques are more helpful, fruitful, powerful, and efficient to study analytically the other nonlinear nonlinear partial differential equations (PDEs) that arise in engineering, plasma physics, mathematical physics, and many other branches of applied sciences.  相似文献   

9.
Eulerian and particle in cell (PIC) simulations are used to investigate the decay instability of electron acoustic waves (EAWs). An EAW is a nonlinear wave with a carefully tailored trapped particle population, that can be excited by a relatively low driver amplitude, if the driver is applied resonantly over many trapping periods. The excited EAW rings at nearly constant amplitude long after the driver is turned off, provided the EAW has the longest wavelength that fits in the plasma. Otherwise, the EAW decays to a longer wavelength EAW, through a vortex-like trapped particle population merging.  相似文献   

10.
The combined effects of both adiabatic dust charge variation and non-thermally (fast) distributed ions on dust acoustic solitary structures are studied in a magnetized dusty plasmas consisting of the negatively and variably charged hot dust fluid, Boltzmann distributed electrons and non-thermally distributed ions. By using the reductive perturbation method, we derive the Korteweg-de Vries (KdV) equation governing the dust acoustic solitary waves. It is shown that the dust charge variation and the presence of non-thermally distributed ions would modify the nature of dust acoustic solitary structures significantly and may excite both dust acoustic solitary holes (soliton with a density dip) and positive solitons (soliton with a density hump).  相似文献   

11.
The head-on collisions between two ion thermal solitary waves in isothermal pair-ion plasmas containing charged dust grains is investigated. Using the extended Poincaré-Lighthill-Kuo (PLK) method, the Korteweg-de Vries (KdV) equations and the analytical phase shifts after the head-on collision of two- solitary waves are derived. The results show that the number densities of positive and negative dust grains to the density of positive ion ratios and the negative-to-positive ion temperature ratio have strong effects on the phase shifts.  相似文献   

12.
It is well known that there are envelope solitary waves in unmagnetized dusty plasmas which are described by a nonlinear Schrodinger equation (NLSE). A three dimension nonlinear Schrodinger equation for small but finite amplitude dust acoustic waves is first obtained for magnetized dusty plasma in this paper. It suggest that in magnetized dusty plasmas the envelope solitary waves exist. The modulational instability for three dimensional NLSE is studied as well. The regions of stability and instability are well determined in this paper.  相似文献   

13.
The nonlinear dust-acoustic waves in an unmagnetized dusty plasma, including consideration of the dust charge variation, is analytically investigated by using the formally variable separation approach. The exact analytical solutions in the general case are also obtained.  相似文献   

14.
Propagation of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions is analyzed. The Kadomtsev–Petviashivili (KP) equation is derived by using the reductive perturbation theory. A Sagdeev potential for this system has been proposed. This potential is used to study the stability conditions and existence of solitonic solutions. Also, it is shown that a rarefactive soliton can be propagates in most of the cases. The soliton energy has been calculated and a linear dispersion relation has been obtained using the standard normal-modes analysis. The effects of variable dust charge on the amplitude, width and energy of the soliton and its effects on the angular frequency of linear wave are discussed too. It is shown that the amplitude of solitary waves of KP equation diverges at critical values of plasma parameters. Solitonic solutions of modified KP equation with finite amplitude in this situation are derived.  相似文献   

15.
The ratios of dust to free electron and free to trapped electron temperatures are examined in warm dusty plasmas with vortex-like electron distribution through the derivation of a modified Korteweg–de Vries (MKdV) equation using a reductive perturbation theory. As the wave amplitude increases, the width and velocity of the soliton deviate from the prediction of the MKdV equation, i.e., the breakdown of the MKdV approximation. To describe the soliton of larger amplitude, the MKdV equation with the fifth-order dispersion term is employed and its higher-order solutions are obtained.  相似文献   

16.
一个非线性色散-耗散方程的显式精确解   总被引:5,自引:0,他引:5  
本文通过直接代数方法与假设方法的一种结合求出了一个用于描述由冷离子和热电子组成的等离子体弱非线性离子声波演化的非线性色散-耗散方程的几类显式精确行波解。这里的结果包含已有文献的结果作为特例,本文的方法也适用于高维非线性发展方程。  相似文献   

17.
In this paper, a modified Korteweg–de Vries (mKdV) equation and Korteweg–de Vries (KdV) equation at critical ion density are derived for dusty plasmas consisting of hot dust fluid, nonisothermal ions and two-temperature electrons. The charge fluctuation dynamics of the dust grains has also been considered. It has been shown that the presence of a second component of electrons modifies the nature of dust acoustic (DA) solitary structures. The effects of two-temperature electrons, obliqueness and external magnetic field on the properties of DA solitary waves are discussed. Numerical investigations show that there exists only rarefactive solitary waves.  相似文献   

18.
The fractional Zakharov-Kuznetsov equations are increasingly used in modeling various kinds of weakly nonlinear ion acoustic waves in a plasma comprising cold ions and hot isothermal electrons in the presence of a uniform magnetic field. This has led to a significant interest in the study of these equations. In this work, solitary pattern solutions of fractional Zakharov-Kuznetsov equations are investigated by means of the homotopy perturbation method with consideration of Jumarie’s derivatives. The effects of fractional derivatives for the systems under consideration are discussed. Numerical results and a comparison with exact solutions are presented.  相似文献   

19.
It is well known that the Korteweg–de Vires (KdV) equation can describe small but finite amplitude dust acoustic waves in a dusty plasmas. In this paper, we use the reductive perturbation method and derive a Kadomtsev–Petviashvili (KP) equation, a modified KP (MKP) equation and a coupled KP equation for unmagnetized, collisionless, cold, and two-ion-temperature dusty plasmas with N different species of dust grains. We find that if a solitary wave exist in this system, the smaller grains have larger velocities and propagate longer distances than that of larger particles. The comparisons are given between the dusty plasma composed by different dust particles and the mono-sized dusty plasma.  相似文献   

20.
The generalized regularized long wave (GRLW) equation has been developed to model a variety of physical phenomena such as ion‐acoustic and magnetohydrodynamic waves in plasma, nonlinear transverse waves in shallow water and phonon packets in nonlinear crystals. This paper aims to develop and analyze a powerful numerical scheme for the nonlinear GRLW equation by Petrov–Galerkin method in which the element shape functions are cubic and weight functions are quadratic B‐splines. The proposed method is implemented to three reference problems involving propagation of the single solitary wave, interaction of two solitary waves and evolution of solitons with the Maxwellian initial condition. The variational formulation and semi‐discrete Galerkin scheme of the equation are firstly constituted. We estimate rate of convergence of such an approximation. Using Fourier stability analysis of the linearized scheme we show that the scheme is unconditionally stable. To verify practicality and robustness of the new scheme error norms L2, L and three invariants I1, I2, and I3 are calculated. The computed numerical results are compared with other published results and confirmed to be precise and effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号