首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper stabilizing unstable periodic orbits (UPO) in a chaotic fractional order system is studied. Firstly, a technique for finding unstable periodic orbits in chaotic fractional order systems is stated. Then by applying this technique to the fractional van der Pol and fractional Duffing systems as two demonstrative examples, their unstable periodic orbits are found. After that, a method is presented for stabilization of the discovered UPOs based on the theories of stability of linear integer order and fractional order systems. Finally, based on the proposed idea a linear feedback controller is applied to the systems and simulations are done for demonstration of controller performance.  相似文献   

2.
In this paper, new adaptive synchronous criteria for a general class of n-dimensional non-autonomous chaotic systems with linear and nonlinear feedback controllers are derived. By suitable separation between linear and nonlinear terms of the chaotic system, the phenomenon of stable chaotic synchronization can be achieved using an appropriate adaptive controller of feedback signals. This method can also be generalized to a form for chaotic synchronization or hyper-chaotic synchronization. Based on stability theory on non-autonomous chaotic systems, some simple yet less conservative criteria for global asymptotic synchronization of the autonomous and non-autonomous chaotic systems are derived analytically. Furthermore, the results are applied to some typical chaotic systems such as the Duffing oscillators and the unified chaotic systems, and the numerical simulations are given to verify and also visualize the theoretical results.  相似文献   

3.
In this paper, a simple method is proposed for chaos control for a class of discrete-time chaotic systems. The proposed method is built upon the state feedback control and the characteristic of ergodicity of chaos. The feedback gain matrix of the controller is designed using a simple criterion, so that control parameters can be selected via the pole placement technique of linear control theory. The new controller has a feature that it only uses the state variable for control and does not require the target equilibrium point in the feedback path. Moreover, the proposed control method cannot only overcome the so-called “odd eigenvalues number limitation” of delayed feedback control, but also control the chaotic systems to the specified equilibrium points. The effectiveness of the proposed method is demonstrated by a two-dimensional discrete-time chaotic system.  相似文献   

4.
This paper presents a robust algorithm to control the chaotic atomic force microscope system (AFMs) by backstepping design procedure. The proposed feedback controller is composed by a sliding mode control (SMC) and a backstepping feedback, so its implementation is quite simple and can be made on the basis of the measured signal. The developed control scheme allows chaos suppression despite uncertainties in the model as well as system external disturbances. The concept of extended system is used such that a continuous sliding mode control effort is generated using backstepping scheme. It is guaranteed that under the proposed control law, uncertain AFMs can asymptotically track target orbits. The converging speed of error states can be arbitrary turned by assigning the corresponding dynamics of the sliding surfaces. Numerical simulations demonstrate its advantages by stabilizing the unstable periodic orbits of the AFMs and this method can also be easily extended to elimination chaotic motion in any types of chaotic AFMs.  相似文献   

5.
The minimum entropy (ME) control is a chaos control technique which causes chaotic behavior to vanish by stabilizing unstable periodic orbits of the system without using mathematical model of the system. In this technique some controller type, normally delayed feedback controller, with an adjustable parameter such as feedback gain is used. The adjustable parameter is determined such that the entropy of the system is minimized. Proposed in this paper is the PSO-based multi-variable ME control. In this technique two or more control parameters are adjusted concurrently either in a single or in multiple control inputs. Thus it is possible to use two or more feedback terms in the delayed feedback controller and adjust their gains. Also the multi-variable ME control can be used in multi-input systems. The minimizing engine in this technique is the particle swarm optimizer. Using online PSO, the PSO-based multi-variable ME control technique is applied to stabilize the 1-cycle fixed points of the Logistic map, the Hénon map, and the chaotic Duffing system. The results exhibit good effectiveness and performance of this controller.  相似文献   

6.
In this paper, based on the stability properties of a passive system, a simple linear state feedback controller is proposed to realize the stability control of a unified chaotic system. Using this method, we can render the non-passive unified chaotic system to be equivalent to a passive one. Simulation results are shown to verify the effectiveness of the proposed controller.  相似文献   

7.
The direct design approach based on tridiagonal structure combines the structure analysis with the design of stabilizing controller and the original nonlinear affine systems is transformed into a stable system with special tridiagonal structure using the method. In this study, the direct method is proposed for synchronizing chaotic systems. There are several advantages in this method for synchronizing chaotic systems: (a) it presents an easy procedure for selecting proper controllers in chaos synchronization; (b) it constructs simple controllers easy to implement. Examples of Lorenz system, Chua’s circuit and Duffing system are presented.  相似文献   

8.
A novel self-organizing wavelet cerebellar model articulation controller (CMAC) is proposed. This self-organizing wavelet CMAC (SOWC) can be viewed as a generalization of a self-organizing neural network and of a conventional CMAC, and it has better generalizing, faster learning and faster recall than a self-organizing neural network and a conventional CMAC. The proposed SOWC has the advantages of structure learning and parameter learning simultaneously. The structure learning possesses the ability of on-line generation and elimination of layers to achieve optimal wavelet CMAC structure, and the parameter learning can adjust the interconnection weights of wavelet CMAC to achieve favorable approximation performance. Then a SOWC backstepping (SOWCB) control system is proposed for the nonlinear chaotic systems. This SOWCB control system is composed of a SOWC and a fuzzy compensator. The SOWC is used to mimic an ideal backstepping controller and the fuzzy compensator is designed to dispel the residual of approximation errors between the ideal backstepping controller and the SOWC. Moreover, the parameters of the SAWCB control system are on-line tuned by the derived adaptive laws in the Lyapunov sense, so that the stability of the feedback control system can be guaranteed. Finally, two application examples, a Duffing–Holmes chaotic system and a gyro chaotic system, are used to demonstrate the effectiveness of the proposed control method. The simulation results show that the proposed SAWCB control system can achieve favorable control performance and has better tracking performance than a fuzzy neural network control system and a conventional adaptive CMAC.  相似文献   

9.
Given a chaotic system and an arbitrarily given reference signal, we design a controller based on the reference signal so that the output of the chaotic system follows the given reference signal asymptotically. Examples of a Duffing system being controlled by a reference signal or being synchronized to another Duffing system are presented.  相似文献   

10.
In this paper, a hybrid control based on pulse width modulator (PWM) is proposed to synchronize a class of master–slave chaotic systems with uncertainties. We use the Genetic Algorithm (GA) together with fuzzy logic to tune the switching time of PWM mode controller such that the output response of master–slave chaotic system can be synchronized. Finally, an example, uncertain master–slave Duffing–Holmes chaos system, is proposed to show the proposed method’s effectiveness for chaotic synchronization.  相似文献   

11.
This paper deals with the tracking control of nonlinear chaotic systems with dynamics uncertainties. A robust control strategy is developed to control a class of nonlinear chaotic systems with uncertainties. The proposed strategy is an input-output control scheme which comprises an uncertainty estimator and a linearizing-like feedback. The control time is explicitly computed. Computer simulations of the Duffing system are provided to verify the validity of the proposed control scheme.  相似文献   

12.
In this paper, a novel approach is proposed for generating multi-wing chaotic attractors from the fractional linear differential system via nonlinear state feedback controller equipped with a duality-symmetric multi-segment quadratic function. The main idea is to design a proper nonlinear state feedback controller by using four construction criterions from a fundamental fractional differential nominal linear system, so that the controlled fractional differential system can generate multi-wing chaotic attractors. It is the first time in the literature to report the multi-wing chaotic attractors from an uncoupled fractional differential system. Furthermore, some basic dynamical analysis and numerical simulations are also given, confirming the effectiveness of the proposed method.  相似文献   

13.
In this paper, stabilization and tracking control problem for parametric strict feedback class of discrete time systems is addressed. Recursive design of control function based on contraction theory framework is proposed instead of traditional Lyapunov based method. Explicit structure of controller is derived for the addressed class of nonlinear discrete-time systems. Conditions for exponential stability of system states are derived in terms of controller parameters. At each stage of recursive procedure a specific structure of Jacobian matrix is ensured so as to satisfy conditions of stability. The closed loop dynamics in this case remains nonlinear in nature. The proposed algorithm establishes global stability results in quite a simple manner as it does not require formulation of error dynamics. Problem of stabilization and output tracking control in case of single link manipulator system with actuator dynamics is analyzed using the proposed strategy. The proposed results are further extended to stabilization of discrete time chaotic systems. Numerical simulations presented in the end show the effectiveness of the proposed approach.  相似文献   

14.
研究了具有不同阶数的受扰不确定混沌系统的降阶修正函数投影同步问题.基于Lyapunov稳定性理论和自适应控制方法,设计了统一的非线性状态反馈控制器和参数更新规则,使得混沌响应系统按照相应的函数尺度因子矩阵和混沌驱动系统的部分状态变量实现同步.方法考虑了实际系统中的模型不确定性和外界扰动,具有较强的实用性和鲁棒性.数值仿真证明了控制方法的有效性.  相似文献   

15.
In this paper the dual synchronization of chaotic systems via output feedback strategy is investigated. The slave chaotic systems are fed by a scalar signal generated by a linear combination of the master systems state variables. The sufficient condition and design procedure for dual synchronization are presented. The proposed method is applied for dual synchronization of the Lorenz–Rossler, Rossler–Chen and Duffing–Van der Pol chaotic systems through computer simulation. The results show the effectiveness and feasibility of the proposed algorithm.  相似文献   

16.
An adaptive feedback control of linearizable chaotic systems   总被引:5,自引:0,他引:5  
This paper proposes an adaptive feedback controller for a class of chaotic systems. This controller can be used for tracking a smooth orbit that can be a limit cycle or a chaotic orbit of another system. Based on Lyapunov approach, the adaptation law is determined to tune the controller gain vector in order to track a predetermined linearizing feedback control. To demonstrate the efficiency of the proposed scheme, two well-known chaotic systems namely Chua’s circuit and a Lur’e-like system are considered as illustrative examples.  相似文献   

17.
针对Lurie混沌控制系统,进行了T-S模糊建模和模糊控制器设计,从而实现了Lurie混沌系统的稳定.在用T-S模糊模型精确重构Lurie系统结构的基础上,利用反馈同步思想,基于并行分布补偿(PDC)技术,得到了简单且易实现的控制器.仿真结果验证了该控制方法的有效性.  相似文献   

18.
Based on the adaptive iterative learning strategy, a simple time-delayed controller is proposed to stabilize unstable periodic orbits (UPOs) embedded in chaotic attractors. This controller includes two parts: one is a linear feedback part; the other is an adaptive iterative learning estimation part. Theoretical analysis and numerical simulation show the effectiveness of this controller.  相似文献   

19.
This paper investigates the synchronization of three dimensional chaotic systems by extending our previous method for chaos stabilization, and proposes a novel simple adaptive feedback controller for chaos synchronization. In comparison with previous methods, the present controller contains single state feedback. To our knowledge, the above controller is the simplest control scheme for synchronizing the three dimensional chaotic systems. The results are validated using numerical simulations.  相似文献   

20.
In this paper, chaotic dynamics of the vibro-impact system under bounded noise excitation is investigated by an extended Melnikov method. Firstly, the Melnikov method in the deterministic vibro-impact system is extended to the stochastic case. Then, a typical stochastic Duffing vibro-impact system is given to application. The analytic conditions for occurrence of chaos are derived by using the random Melnikov process in the mean-square-value sense. In addition, the numerical simulations confirm the validity of analytic results. Also, the influences of interesting system parameters on the chaotic dynamics are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号