首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An amphiphilic heteroleptic polypyridyl ruthenium complex with a high molar extinction coefficient was synthesized and demonstrated as an efficient, thermostable sensitizer in nanocrystalline dye-sensitized solar cells.  相似文献   

2.
A phenomenally high molar extinction coefficient heteroleptic ruthenium(II) complex [Ru(4,4'-carboxylic acid-2,2'-bipyridine)(4,4'-(4-{4-methyl-2,5-bis[3-methylbutoxy]styryl}-2,5-bis[3-methylbutoxy]-2,2'-bipyridine)(NCS) 2] ( DCSC13) was synthesized by incorporating donor-acceptor ligands. The absorption spectrum of the DCSC13 sensitizer is dominated by metal-to-ligand charge-transfer transitions (MLCT) in the visible region, with absorption maxima appearing at 442 and 554 nm. The lowest MLCT absorption bands are red-shifted, and the molar extinction coefficients of these bands are significantly higher at 72,100 and 30,600 M(-1) cm(-1), respectively, when compared to those of the analogous [Ru(4,4'-carboxylic acid-2,2'-bipyridine)(4,4'-dimethyl-2,2'-bipyridine)(NCS)2] (N820) sensitizer. The DCSC13 complex, when anchored on nanocrystalline TiO 2 films, exhibited increased short-circuit photocurrent and consequent power-conversion efficiency when compared with the N820 sensitizer.  相似文献   

3.
Two novel heteroleptic sensitizers, Ru((4,4-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-hexyloxystyryl)-2,2-bipyridine)(NCS)2 and Ru((4,4-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-methoxystyryl)-2,2'-bipyridine) (NCS)2, coded as K-19 and K-73, respectively, have been synthesized and characterized by 1H NMR, FTIR, UV-vis absorption, and emission spectroscopy and excited-state lifetime and spectroelectrochemical measurements. The introduction of the alkoxystyryl group extends the conjugation of the bipyridine donor ligand increasing markedly their molar extinction coefficient and solar light harvesting capacity. The dynamics of photoinduced charge separation following electronic excitation of the K-19 dye was scrutinized by time-resolved laser spectroscopy. The electron transfer from K-19 to the conduction band of TiO2 is completed within 20 fs while charge recombination has a half-life time of 800 s. The high extinction coefficients of these sensitizers enable realization of a new generation of a thin film dye sensitized solar cell (DSC) yielding high conversion efficiency at full sunlight even with viscous electrolytes based on ionic liquids or nonvolatile solvents. An unprecedented yield of over 9% was obtained under standard reporting conditions (simulated global air mass 1.5 sunlight at 1000 W/m2 intensity) when the K-73 sensitizer was combined with a nonvolatile "robust" electrolyte. The K-19 dye gave a conversion yield of 7.1% when used in conjunction with the binary ionic liquid electrolyte. These devices exhibit excellent stability under light soaking at 60 degrees C. The effect of the mesoscopic TiO2 film thickness on photovoltaic performance has been analyzed by electrochemical impedance spectroscopy (EIS).  相似文献   

4.
We report two new heteroleptic polypyridyl ruthenium complexes, coded C101 and C102, with high molar extinction coefficients by extending the pi-conjugation of spectator ligands, with a motivation to enhance the optical absorptivity of mesoporous titania film and charge collection yield in a dye-sensitized solar cell. On the basis of this C101 sensitizer, several DSC benchmarks measured under the air mass 1.5 global sunlight have been reached. Along with an acetonitrile-based electrolyte, the C101 sensitizer has already achieved a strikingly high efficiency of 11.0-11.3%, even under a preliminary testing. More importantly, based on a low volatility 3-methoxypropionitrile electrolyte and a solvent-free ionic liquid electrolyte, cells have corresponding >9.0% and approximately 7.4% efficiencies retained over 95% of their initial performances after 1000 h full sunlight soaking at 60 degrees C. With the aid of electrical impedance measurements, we further disclose that, compared to the cell with an acetonitrile-based electrolyte, a dye-sensitized solar cell with an ionic liquid electrolyte shows a feature of much shorter effective electron diffusion lengths due to the lower electron diffusion coefficients and shorter electron lifetimes in the mesoporous titania film, explaining the photocurrent difference between these two type devices. This highlights the next necessary efforts to further improve the efficiency of cells with ionic liquid electrolytes, facilitating the large-scale production and application of flexible thin film mesoscopic solar cells.  相似文献   

5.
Density functional theory (DFT) calculation on the molecular structures, charge distribution, molecular orbitals, electronic absorption spectra of a series of eight unsymmetrical phthalocyaninato zinc complexes with one peripheral (E)-2-cyano-3-(5-vinylthiophen-2-yl) acrylic acid substituent at 2 or 3 position as an electron-withdrawing group and a different number of electron-donating amino groups at the remaining peripheral positions (9, 10, 16, 17, 23, 24) of the phthalocyanine ring, namely ZnPc-β-A, ZnPc-β-A-I-NH(2), ZnPc-β-A-II-NH(2), ZnPc-β-A-III-NH(2), ZnPc-β-A-I,II-NH(2), ZnPc-β-A-I,III-NH(2), ZnPc-β-A-II,III-NH(2), and ZnPc-β-A-I,II,III-NH(2), reveals the effects of amino groups on the charge transfer properties of these phthalocyanine derivatives with a typical D-π-A electronic structure. The introduction of amino groups was revealed altering of the atomic charge distribution, lifting the frontier molecular orbital level, red-shift of the near-IR bands in the electronic absorption spectra, and finally resulting in enhanced charge transfer directionality for the phthalocyanine compounds. Along with the increase of the peripheral amino groups at the phthalocyanine ring from 0, 2, 4, to 6, the dihedral angle between the phthalocyanine ring and the average plane of the (E)-2-cyano-3-(5-vinylthiophen-2-yl) acrylic acid substituent increases from 0 to 3.3° in an irregular manner. This is in good contrast to the regular and significant change in the charge distribution, destabilization of frontier orbital energies, and red shift of near-IR bands of phthalocyanine compounds along the same order. In addition, comparative studies indicate the smaller effect of incorporating two amino groups onto the 16 and 17 than on 9 and 10 or 23 and 24 peripheral positions of the phthalocyanine ring onto the aforementioned electronic properties, suggesting the least effect on tuning the charge transfer property of the phthalocyanine compound via introducing two electron-donating amino groups onto the 16 and 17 peripheral positions. As expected, compound ZnPc-β-A-I,III-NH(2) with four amino groups at 9, 10, 23, and 24 positions of the phthalocyanine ring shows the best charge transfer directionality among the three phthalocyaninato zinc complexes with four peripheral amino groups.  相似文献   

6.
A new ruthenium(II) complex, tetrabutylammonium [ruthenium (4-carboxylic acid-4'-carboxylate-2,2'-bipyridine)(4,4'-di(2-(3,6-dimethoxyphenyl)ethenyl)-2,2'-bipyridine)(NCS)(2)] (N945H), was synthesized and characterized by analytical, spectroscopic, and electrochemical techniques. The absorption spectrum of the N945H sensitizer is dominated by metal-to-ligand charge-transfer (MLCT) transitions in the visible region, with the lowest allowed MLCT bands appearing at 25 380 and 18 180 cm(-1). The molar extinction coefficients of these bands are 34 500 and 18 900 M(-1) cm(-1), respectively, and are significantly higher when compared to than those of the standard sensitizer cis-dithiocyanatobis(4,4'-dicarboxylic acid-2,2'-bipyridine)ruthenium(II). An INDO/S and density functional theory study of the electronic and optical properties of N945H and of N945 adsorbed on TiO(2) was performed. The calculations point out that the top three frontier-filled orbitals have essentially ruthenium 4d (t(2g) in the octahedral group) character with sizable contribution coming from the NCS ligand orbitals. Most critically the calculations reveal that, in the TiO(2)-bound N945 sensitizer, excitation directs charge into the carboxylbipyridine ligand bound to the TiO(2) surface. The photovoltaic data of the N945 sensitizer using an electrolyte containing 0.60 M butylmethylimidazolium iodide, 0.03 M I(2), 0.10 M guanidinium thiocyanate, and 0.50 M tert-butylpyridine in a mixture of acetonitrile and valeronitrile (volume ratio = 85:15) exhibited a short-circuit photocurrent density of 16.50 +/- 0.2 mA cm(-2), an open-circuit voltage of 790 +/- 30 mV, and a fill factor of 0.72 +/- 0.03, corresponding to an overall conversion efficiency of 9.6% under standard AM (air mass) 1.5 sunlight, and demonstrated a stable performance under light and heat soaking at 80 degrees C.  相似文献   

7.
8.
A highly efficient organic sensitizer for dye-sensitized solar cells   总被引:2,自引:0,他引:2  
We have synthesized a highly efficient organic dye for a dye-sensitized solar cell; the overall solar-to-energy conversion efficiency was 9.1% at AM 1.5 illumination (100 mW cm(-2)): short-circuit current density (J(sc)) = 18.1 mA cm(-2), open circuit photovoltage (V(oc)) = 743 mV and fill factor (ff) = 0.675.  相似文献   

9.
10.
A heteroleptic polypyridyl ruthenium complex, cis-Ru(4,4'-bis(5-octylthieno[3,2-b]thiophen-2-yl)-2,2'-bipyridine)(4,4'-dicarboxyl-2,2'-bipyridine)(NCS)2, with a high molar extinction coefficient of 20.5 x 10(3) M(-1) cm(-1) at 553 nm has been synthesized and demonstrated as a highly efficient sensitizer for a dye-sensitized solar cell, giving a power conversion efficiency of 10.53% measured under an irradiation of air mass 1.5 global (AM 1.5G) full sunlight.  相似文献   

11.
A novel ligand 4,4'-bis(carboxyvinyl)-2,2'-bipyridine (L) and its ruthenium(II) complex [Ru(II)L(2)(NCS)(2)] (K8) were synthesized and characterized by analytical, spectroscopic, and electrochemical techniques. The performance of the K8 complex as a charge transfer photosensitizer in nanocrystalline TiO(2) based solar cells was studied. When the K8 complex anchored onto a nanocrystalline TiO(2) film, we achieved very efficient sensitization yielding 77 +/-5% incident photon-to-current efficiencies (IPCE) in the visible region using an electrolyte consisting of 0.6 M methyl-N-butyl imidiazolium iodide, 0.05 M iodine, 0.05 M LiI, and 0.5 M 4-tert-butylpyridine in a 50/50 (v/v) mixture of valeronitrile and acetonitrile. Under standard AM 1.5 sunlight, the complex K8 gave a short circuit photocurrent density of 18 +/- 0.5 mA/cm(2), and the open circuit voltage was 640 +/- 50 mV with fill factor of 0.75 +/- 0.05, corresponding to an overall conversion efficiency of 8.64 +/- 0.5%.  相似文献   

12.
A novel distyryl-substituted boradiazaindacene (BODIPY) dye displays interesting properties as a sensitizer in DSSC systems, opening the way to further exploration of structure-efficiency correlation within this class of dyes.  相似文献   

13.
The halogen bonding between [Ru(dcbpy)(2)(SCN)(2)] dye and I(2) molecule has been studied. The ruthenium complex forms a stable [Ru(dcbpy)(2)(SCN)(2)]···I(2)·4(CH(3)OH) adduct via S···I interaction between the thiocyanate ligand and the I(2) molecule. The adduct can be seen as a model for one of the key intermediates in the regeneration cycle of the oxidized dye by the I(-)/I(3)(-) electrolyte in dye sensitized solar cells.  相似文献   

14.
Ruthenocycle bis(4,4′-dicarboxy-2,2′-bipyridine)(2-phenylpyridine-2C,N)ruthenium(II) hexafluorophosphate was used as a sensitizer in a dye-sensitized solar cell (DSSC) based on nanocrystalline TiO2, which was applied onto a conducting substrate. Its electrochemical and spectral characteristics were studied. It was found that, when the DSSC was illuminated with visible light of power 35 mW/cm2, the short-circuit current density was 11.6 mA cm?2 and the open-circuit voltage was 0.49 V. The efficiency (η) of DSSC at a fill factor of 45% was 7.1%. Using the method of modulation spectroscopy of photocurrents and photopotentials, the life time and transit time of electrons were found to be 7 and 5 ms, respectively, and the diffusion coefficient of electrons was found to be 10?5 cm2 s?1. Comparing the life and transit times of electron, it was concluded that the photogenerated electrons had time to reach the conducting substrate during their life time.  相似文献   

15.
In this work, we have synthesized Zinc oxide (ZnO) tripods and used its thin film as photoanode in dye-sensitized solar cells. SEM micrographs of the as-prepared sample of ZnO confirmed tripod-like morphology consisting of three cylindrical arms with well-defined ends, joined at a common core. The prepared sample of ZnO tripods was further characterized by EDX, XRD, UV-VIS, and FTIR. The dye N719-sensitized solar cell fabricated with photoanode of ZnO prepared in this work provided the open-circuit photo voltage (V oc)?=?0.558 V, short-circuit photocurrent (J sc)?=?6.368 mA?cm-2, fill factor (FF)?=?0.50, and total conversion efficiency (η)?=?0.88 % under full light illumination (intensity 200 mW?cm?2). When cell was illuminated by visible light (150 mW/cm2), V oc?=?0.546 V, J sc?=?4.437 mA/cm2, FF?=?0.54, and η?=?0.88 % were obtained.  相似文献   

16.
17.
The new heteroleptic ruthenium(II) complex containing a 1H-pyridin-(2E)-ylidene (PYE) ligand was synthesized and characterized using UV/Vis, FTIR, and NMR spectroscopies, mass spectrometry, elemental analysis, and cyclic voltammetry. The photovoltaic performance of the ruthenium complex as a charge transfer photosensitizer in nc-titanium dioxide based dye-sensitized solar cell was studied and compared with cis-bis(isothiocyanato)(2,2′-bipyridyl-4,4′-dicarboxylato)(2,2′-bipyridyl-4,4′-di-nonyl)ruthenium(II) (Z907) under standard AM 1.5 sunlight. The complex CS90 gave a photocurrent density of 1.80?mA?cm?2, 400?mV open-circuit potential, and 0.58 fill factor yielding an efficiency of 0.42% where the reference Z907 yielded an efficiency of 4.12%. The decrease in conversion efficiency observed for CS90 is attributed to a steric interaction between PYE and the TiO2 surface that prevents optimum binding and also restricts ligand dynamics that are associated with oxidation state changes.  相似文献   

18.
Solid-state dye-sensitized solar cells were fabricated using the organic hole-transporting medium (HTM) 2,2'7,7'-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (spiro-MeOTAD), and three organic indoline-based sensitizer dyes with high molar extinction coefficients. The cells were characterized by several techniques, including spectral response measurements, photovoltage decay transients, intensity modulated photovoltage spectroscopy (IMVS), and charge extraction. The differences in apparent electron lifetime observed for cells fabricated using the three dyes are attributed in part to changes in the surface dipole potential at the TiO2/spiro-MeOTAD interface, which shift the TiO2 conduction band energy relative to the Fermi level of the HTM. These energy shifts influence both the open circuit voltage (as a result of changes in free electron density) and the short circuit current (as a consequence of changes in the overlap between the dye LUMO level and the conduction band). A self-consistent approach was used to derive the positions of the conduction band relative to the spiro-MeOTAD redox Fermi level for cells fabricated using the three dyes. The analysis also provided estimates of the free electron lifetime in spiro-MeOTAD cells. In order to evaluate the possible contribution of the adsorbed dyes to the observed changes in surface dipole potential, their dipole moments were estimated using ab initio density functional theory (DFT) calculations. Comparison of the calculated dipole contributions with the experimentally measured shifts in conduction band energy revealed that other factors such as proton adsorption may be predominant in determining the surface dipole potential.  相似文献   

19.
The electrophoretic deposition combined with common pressure hydrothermal treatment was employed to prepare nanocrystalline TiO2 thin film from suspension of tetra-n-butyl titanate and P25 at low temperature. The tetra-n-butyl titanate was hydrolyzed and crystallized into anatase to interconnect nanocrystalline TiO2 particles and to stick them to a conductive substrate by common pressure hydrothermal treatment to improve the electron transport properties of the deposited thin film. A dye-sensitized solar cell based on TiO2 thin film prepared by the low temperature method yielded the conversion efficiency of 6.12%. Due to the relative slower electron transport rate in the deposited film, its conversion efficiency was slightly lower than that of the cell with TiO2 thin film prepared by the conventional high temperature sintering method. Since it is free of high temperature sintering step, this method can be used to prepare nanocrystalline TiO2 thin film on plastic polymer conductive substrate for fabrication of flexible dye-sensitized solar cell.  相似文献   

20.
Transition Metal Chemistry - A new ferrocene-containing hydronitrate salt with formula N-methylferrocenyl-N-ethylhydroxy ammonium nitrate has been synthesized and characterized using microanalyses,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号