首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Layer-by-layer deposition of positively and negatively charged macromolecular species is an ideal method for constructing thin films incorporating biological molecules. We investigate the adsorption of fibronectin onto polyelectrolyte multilayer (PEM) films using optical waveguide lightmode spectroscopy (OWLS) and atomic force microscopy (AFM). PEM films are formed by adsorption onto Si(Ti)O2 from alternately introduced flowing solutions of anionic poly(sodium 4-styrenesulfonate) (PSS) and cationic poly(allylamine hydrochloride) (PAH). Using OWLS, we find the initial rate and overall extent offibronectin adsorption to be greatest on PEM films terminated with a PAH layer. The polarizability density of the adsorbed protein layer, as measured by its refractive index, is virtually identical on both PAH- and PSS-terminated films; the higher adsorbed density on the PAH-terminated film is due to an adsorbed layer of roughly twice the thickness. The binding of monoclonal antibodies specific to the protein's cell binding site is considerably enhanced to fibronectin adsorbed to the PSS layer, indicating a more accessible adsorbed layer. With increased salt concentration, we find thicker PEM films but considerably thinner adsorbed fibronectin layers, owing to increased electrostatic screening. Using AFM, we find adsorbed fibronectin layers to contain clusters; these are more numerous and symmetric on the PSS-terminated film. By considering the electrostatic binding of a segmental model fibronectin molecule, we propose a picture of fibronectin adsorbed primarily in an end-on-oriented monolayer on a PAH-terminated film and as clusters plus side-on-oriented isolated molecules onto a PSS-terminated film.  相似文献   

2.
The alternate adsorption of polycation poly(allylamine hydrochloride)(PAH) and the sodium salt of the polymeric dye poly(1-[ p-(3'-carboxy-4'-hydroxyphenylazo)benzenesulfonamido]-1,2-ethandiyl)(PCBS) on quartz crystals coated with silica was studied to understand the structural properties and adsorption kinetics of these films using a combination of quartz crystal microbalance with dissipation monitoring (QCM-D), absorbance, and ellipsometry measurements. In-situ deposition of the polycation PAH on QCM crystals was monitored, followed by rinsing with water and then deposition of the polyanion PCBS. The effects of polymer concentration and pH on film structure, composition and adsorption kinetics were probed. The polymers were adsorbed at neutral pH conditions and at elevated pH conditions where PAH was essentially uncharged to obtain much thicker films. The change in the resonant frequency, Deltaf, of the QCM-D showed a linear decrease with the number of bilayers, a finding consistent with absorbance and ellipsometric thickness measurements which showed linear growth of film thickness. By using the Delta f ratios of PCBS to PAH, the molar ratios of repeat units of PCBS to PAH in the bilayer films as determined by QCM-D were approximately 1:1 at polyelectrolyte concentrations 5-10 mM repeat unit, indicating complete dissociation of the ionic groups. The frequency and dissipation data from the QCM-D experiments were analyzed with the Voigt model to estimate the thickness of the hydrated films which were then compared with thicknesses of dry films measured by ellipsometry. This led to estimates of the water content of the films to be approximately 45 wt %. In addition to the QCM-D, some films were also characterized by a QCM which measures only the first harmonic without dissipation monitoring. For the deposition conditions studied, the deposited mass values measured by the QCM's first harmonic were similar to the results obtained using higher harmonics from QCM-D, indicating that the self-assembled polyelectrolyte films were rigid.  相似文献   

3.
A kinetic model is proposed to describe the diffusion and adsorption behavior of gas in multilayer films. Numerical solutions are attained on time scales of seconds using a finite differencing approximation to the kinetic equations. Predictions of this model are compared to experimental data for the case of NO2 diffusing through a porphyrin film. The model predicts a binding energy for the NO2 porphyrin interaction of 0.72 eV. It also predicts that for this system diffusion is the limiting factor for the adsorption response time of the film, although the recovery time is determined by both the diffusion coefficient and NO2 binding energy. Comparison with experiment gives a predicted diffusion coefficient of approximately 10(-14) m2.s-1.  相似文献   

4.
Photopatterned nanoporosity in polyelectrolyte multilayer films   总被引:1,自引:0,他引:1  
We report on spatial control of nanoporosity in polyelectrolyte multilayer (PEM) films using photopatterning and its effects on film optical and adsorption properties. Multilayers assembled from poly(acrylic acid-ran-vinylbenzyl acrylate) (PAArVBA), a photo-cross-linking polymer, and poly(allylamine hydrochloric acid) (PAH) were patterned using ultraviolet light followed by immersion in low pH and then neutral pH solutions to induce nanoporosity in unexposed regions. Model charged small molecules rhodamine B, fluorescein, and propidium iodide and the model protein albumin exhibit increased adsorption to nanoporous regions of patterned PEM films as shown by fluorescence microscopy and radiolabeling experiments. Films assembled with alternating stacks of PAH/poly(sodium-4-styrene sulfonate) (SPS), which do not become nanoporous, and stacks of PAH/PAArVBA were patterned to create nanoporous capillary channels. Interdigitated channels demonstrated simultaneous, separate wicking of dimethyl sulfoxide-solvated fluorescein and rhodamine B. In addition, these heterostack structures exhibited patternable Bragg reflectivity of greater than 25% due to refractive index differences between the nanoporous and nonporous stacks. Finally, the PEM assembly process coupled with photo-cross-linking was used to create films with two separate stacked reflective patterns with a doubling in reflectivity where patterns overlapped. The combined adsorptive and reflective properties of these films hold promise for applications in diagnostic arrays and therapeutics delivery.  相似文献   

5.
Alternated deposition of polyanions and polycations on a charged solid substrate leads to the buildup of polyelectrolyte multilayer (PEM) films. Two types of PEM films were reported in the literature: films whose thickness increases linearly and films whose thickness increases exponentially with the number of deposition steps. However, it was recently found that, for exponentially growing films, the exponential increase of the film thickness takes place only during the initially deposited pairs of layers and is then followed by a linear increase. In this study, we investigate the growth process of hyaluronic acid/poly(L-lysine) (HA/PLL) and poly(L-glutamic acid)/poly(allylamine) (PGA/PAH) films, two films whose growth is initially exponential, when the growth process enters the linear regime. We focus, in particular, on the influence of the molecular weight (Mw) of the polyelectrolytes. For both systems, we find that the film thickness increment per polyanion/polycation deposition step in the linear growth regime is fairly independent of the molecular weights of the polyelectrolytes. We also find that when the (HA/PLL)n films are constructed with low molecular weight PLL, these chains can diffuse into the entire film during each buildup cycle, even for very thick films, whereas the PLL diffusion of high molecular weight chains is restricted to the upper part of the film. Our results lead to refinement of the buildup mechanism model, introduced previously for the exponentially growing films, which is based on the existence of three zones over the entire film thickness. The mechanism no longer needs all the "in" and "out" diffusing polyanions or polycations to be involved in the buildup process to explain the linear growth regime but merely relies on the interaction between the polyelectrolytes with an upper zone of the film. This zone is constituted of polyanion/polycation complexes which are "loosely bound" and rich in the polyelectrolyte deposited during the former deposition step.  相似文献   

6.
Amphiphilic hyperbranched polyester (P2) consisting of a hydrophobic core, surrounded by aromatic carboxylic acids, is self-assembled into aggregates in aqueous solution at pH region of 3.8–4.7 and in THF–water mixed solution at THF/water volume ratio of 1/100–1/10. With P2 in both aqueous and THF–water mixed solution as polyanion and linear poly(diallydimethylammonium chloride) (PDAC) as polycation, self-assembled films were successfully formed by layer-by-layer dipping. The solution condition of P2, including the pH of aqueous solution and the THF/water volume ratio, affected not only the absorption behavior of P2 but also the surface morphology and hydrophilicity of the films with P2 as the outmost layer. At lower pH or higher THF/water volume ratio the aggregation of P2 in solution was enhanced, thus resulting in higher adsorption rate for P2, more rough and less hydrophilic surface for the films.  相似文献   

7.
Hoshi T  Saiki H  Anzai J 《Talanta》2003,61(3):363-368
Uricase (UOx) and polyelectrolyte were used for preparation of a permselective multilayer film and enzyme multilayer films on a platinum (Pt) electrode, allowing the detection of uric acid amperometrically. The polyelectrolyte multilayer (PEM) film composed of poly(allylamine) (PAA) and poly(vinyl sulfate) (PVS) were prepared via layer-by-layer assembly on the electrode, functioning as H2O2-selective film. After deposition of the permselective film (PAA/PVS)2PAA, UOx and PAA were deposited via layer-by-layer sequential deposition up to 10 UOx layers to prepare amperometric sensors for uric acid. Current response to uric acid was recorded at +0.6 V vs. Ag/AgCl to detect H2O2 produced from the enzyme reaction. The response current increased with increasing the number of UOx layers. Even in the presence of ascorbic acid, uric acid can be detected over the concentration range 10−6-10−3 M. The response current and deposited amount of UOx were affected by deposition bath pH and the addition of salt. The deposition of PAA/UOx film prepared in 2 mg ml−1 solution (pH 11) of PAA with NaCl (8 mg ml−1) and 0.1 mg ml−1 solution (pH 8.5) of UOx with borate (100 mM) resulted in an electrode which shows the largest response to uric acid. The response of the sensor to uric acid was decreased by 40% from the original activity after 30 days.  相似文献   

8.
Polyelectrolyte multilayer thin films were prepared via the alternate deposition of poly(allylamine hydrochloride) (PAH) and a blend of poly(acrylic acid) (PAA) and poly(styrenesulfonate) (PSS). When the pH of the blend solution was 3.5, the presence of PAA in this solution significantly increased the total film thickness. With only 10 wt % PAA in the blend adsorption solution, a large increase in film thickness was observed (92 nm cf. 18 nm). It was also demonstrated that the total amount of PSS adsorbed was enhanced by the presence of PAA in the blend solution, showing that the blend solution composition influenced that of the multilayer films. Thin films prepared with nanoblended layers also showed improved pH stability, because they exhibited reduced film rearrangement upon exposure to acidic conditions (pH = 2.5).  相似文献   

9.
<正>Nanomechanical properties of multilayer films constructed of polyaniline(PANI) and azobeneze-containing polyelectrolytes(PNACN and PPAPE) were studied by using nanoindentation method.The multilayer films were prepared by the electrostatic layer-by-layer self-assembly through alternately dipping in the polymer solutions.The multilayer films deposited onto the glass slides after proper dry were used for the nanomechanical property testing.The nanomechanical measurement indicated that the PANI/PNACN and PANI/PPAPE multilayers possessed the mean elastic modulus of 5.42 GPa and 4.35 GPa,and hardness of 0.26 GPa and 0.18 GPa,respectively.The nanoscratch properties of the PANI/PNACN and PANI/PPAPE multilayer films were also measured.The critical loads of PANI/PNACN and PANI/PPAPE films were 103.52 mN and 100.59 mN.The degree of electrostatic cross-linking in the multilayers could be altered by exposing the films to aqueous solutions with different pH values.As a result,the modulus and hardness of the multilayer films were changed through the solvent treatment.Both modulus and hardness of the PANI/PNACN films obviously increased after dipping the multilayer films in solutions with pH in a range from 9 to 11.  相似文献   

10.
The development of new methods for fabricating thin films that provide precise control of the three-dimensional topography and cell adhesion could lead to significant advances in the fields of tissue engineering and biosensors. This Communication describes the successful attachment and spreading of primary hepatocytes on polyelectrolyte multilayer (PEM) films without the use of adhesive proteins such as collagen or fibronectin. We demonstrate that the attachment and spreading of primary hepatocytes can be controlled using this layer-by-layer deposition of ionic polymers. In our study, we used synthetic polymers, namely poly(diallyldimethylammonium chloride) (PDAC) and sulfonated poly(styrene) (SPS) as the polycation and polyanion, respectively, to build the multilayers. Primary hepatocytes attached and spread preferentially on SPS surfaces over PDAC surfaces. SPS patterns were formed on PEM surfaces, either by microcontact printing of SPS onto PDAC surfaces or vice versa, to obtain patterns of primary hepatocytes. PEM is a useful technique for fabricating controlled co-cultures with specified cell-cell and cell-surface interactions on a protein-free environment, thus providing flexibility in designing cell-specific surfaces for tissue engineering applications.  相似文献   

11.
Diffusion exchange of dextran with molecular weights 4.4 and 77 kDa through polyelectrolyte multilayer (PEM) hollow capsules consisting of four bilayers of polystyrene sulfonate/polydiallyldimethylammonium chloride has been investigated using two-dimensional nuclear-magnetic-resonance methods: diffusion-diffusion exchange spectroscopy (DEXSY) and diffusion-relaxation correlation spectroscopy (DRCOSY). Results obtained in DRCOSY experiments show that the diffusion process of dextran 77 kDa exhibits an observation time dependence suggesting a diffusion behavior restricted by confinement. We find evidence for both single capsule and capsule aggregate states, with a partitioning of the 77-kDa dextran between the free and capsule states much larger than that suggested by volume fraction alone. Results from DEXSY experiments show that dextran 77 kDa is in diffusive exchange through the capsules with an exchange time of around 1 s. In contrast, the capsules have no detectable influence on the diffusion process of the dextran 4.4 kDa. This quantitative information may be used in designing PEM capsules as drug carriers.  相似文献   

12.
Polyelectrolyte multilayer (PEM) films have been recently applied to surface modification of biomaterials. Cellular interactions with PEM films consisted of weak polyelectrolytes are greatly affected by the conditions of polyelectrolyte deposition, such as pH of polyelectrolyte solution. Previous studies indicated that the adhesion of several types of mammalian cells to PAH/PAA multilayer films was hindered by low pH and high layer numbers. The objective of this study is to evaluate whether the hemocompatibility of polysulfone can be modulated by deposition of poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) multilayer films. PAH/PAA multilayer films with different layer numbers were assembled onto polysulfone at either pH 2.0 or pH 6.5. The number of platelet adhesion and the morphology of adherent platelets were determined to evaluate hemocompatibility of modified substrates. Compared to non-treat polysulfone, the PEM films developed at pH 2.0 decreased platelet adhesion, while those built at pH 6.5 enhanced platelet deposition. Platelet adhesion was found positively correlated to polyclonal antibodies binding to surface-bound fibrinogen. The extent of platelet spreading was increased with layer numbers of PEM films, suggesting that the adherent platelets on thick PEM films were prone to activation. In conclusion, PAH/PAA films with few layers developed at pH 2.0 possessed better hemocompatibility compared to other substrates.  相似文献   

13.
We studied the swelling and the uptake of water (H2O or D2O) vapours in polyelectrolyte (PE) multilayer (PEM) samples deposited on solid support (Si wafers) as a function of the isotope nature of the vapour and the charge of the last polymer layer. The samples were prepared with deuterated poly(sodium 4-styrenesulfonate) (dPSS) and poly(allylamine hydrochloride) (PAH). Two types of samples were studied. The sample with a structure Si/PEI/(dPSS/PAH)6/dPSS was negatively charged. A positively charged sample was PAH terminated and had the structure Si/PEI/(dPSS/PAH)6. The film thickness and scattering length density were estimated from neutron reflectometry (NR) experiments and the results were complemented with in-situ QCM measurements.We demonstrate that the swelling of PEM in H2O and D2O vapours is similar. However, the amount of adsorbed D2O is around 10% more than the adsorbed H2O. Such isotope effect correlates well with the rough estimation that the isotope effect usually scales with the difference in the mass density of the different isotope forms of the substances. For precise analysis of the NR data we assumed existence of empty voids in the structure of the PEM. These voids might be filled with “condensed” water when the samples are exposed to water vapors. We show that the layers we studied consist of up to 25% of such voids.We showed that the amount of sorbed water depends on the nature of the last layer which builds the PEM thus confirming the “odd-even effect” already shown in the literature.  相似文献   

14.
The influence of common cationic surfactants on the physical properties of differently composed polyelectrolyte films prepared by the layer-by-layer (LbL) technology was investigated. Free-standing polyelectrolyte films as microcapsules showed a fast, strong response to the addition of less than 1 mM cationic surfactant cetyltrimethylammonium bromide (CeTAB). As a function of the polyelectrolyte composition, the behavior of the capsules varied from negligible changes to complete disintegration via strong swelling. The response of microcapsules consisting of (poly(allylamine hydrochloride)(PAH)/poly(styrene sulfonate)(PSS))(4) was associated with a 5-fold volume increase, a fast switch of permeability, and in the case of fluorescently labeled films a 4-fold increase in fluorescence intensity. The kinetics and strengths of the interaction process were investigated by confocal laser scanning microscopy (CLSM) and fluorescence spectroscopy. Also, the relative stabilities of the polycation/polyanion and surfactant/polyanion complexes were determined. A mechanism was suggested to explain the interactions between the cationic surfactants and polyelectrolyte capsules. The strong response can be exploited in potential applications such as the triggered release of drugs or other encapsulated materials, the fluorescence-based detection of cationic detergents, and a switchable stopper in microchannels. However, the high sensitivity of LbL films to traces of cationic surfactants can also limit their applicability to the encapsulation of drugs or other materials because pharmaceutical or technical formulations often contain cationic surfactants as preservatives such as benzalkonium salts (BAC). It was demonstrated that undesired capsule opening can be effectively prevented by cross-linking the polyelectrolyte multilayers.  相似文献   

15.
Microarrays containing multiple, nanostructured layers of biological materials would enable high-throughput screening of drug candidates, investigation of protein-mediated cell adhesion, and fabrication of novel biosensors. In this paper, we have examined in detail an approach that allows high-quality microarrays of layered, bionanocomposite films to be deposited on virtually any substrate. The approach uses LBL self-assembly to pre-establish a multilayered structure on an elastomeric stamp, and then uses microCP to transfer the 3-D structure intact to the target surface. For examples, different 3-D patterns containing dendrimers, polyelectrolyte multilayers and two proteins, sADH and sDH, have been fabricated. For the first time, the approach was also extended to create overlaid bionanocomposite patterns and multiple proteins containing patterns. The approach overcomes a problem encountered when using microCP to establish a pattern on the target surface and then building sequential layers on the pattern via LBL self-assembly. Amphiphilic molecules such as proteins and dendrimers tend to adsorb both to the patterned features as well as the underlying substrate, resulting in low-quality patterns. By circumventing this problem, this research significantly extends the range of surfaces and layering constituents that can be used to fabricate 3-D, patterned, bionanocomposite structures. [image in text]  相似文献   

16.
The seeding of endothelial cells on biomaterial surfaces has become a major challenge to achieve better haemocompatibility of these surfaces. Multilayers of polyelectrolytes formed by the layerby-layer method are promising in this respect. In this study, the interactions of endothelial cells with multilayered polyelectrolytes films were investigated. The build-ups were prepared by selfassembled alternatively adsorbed polyanions and polycations functionalised with fibronectin and collagen. Anionic poly(sodium 4-styrenesulfonate) and cationic poly(allylamine hydrochloride) polyelectrolytes were chosen as a model system. Elaborated surfaces were characterised by electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode showed good reversible electrochemical properties and high stability in an electrolyte solution. The film ohmic resistance was highest when the film was coated with fibronectin; the parameters so determined were correlated with atomic force microscopy images. Cell colorimetric assay (WST-1) and immunofluorescence were used to quantify the cell viability and evaluate the adhesion properties. When cultured on a surface where proteins were deposited, cells adhered and proliferated better with fibronectin than with collagen. In addition, a high surface free energy was favourable to adhesion and proliferation (48.8 mJ m−2 for fibronectin and 39.7 mJ m−2 for collagen, respectively). Endothelial cells seeded on functionalised-polyelectrolyte multilayer films showed a good morphology and adhesion necessary for the development of a new endothelium.  相似文献   

17.
Multilayer films consisting of polyethylenimine (PEI) and albumin were successfully prepared on biomedical 316L stainless steel surface via electrostatic self-assembly of the PEI and albumin. The process of electrostatic self-assembly of PEI/albumin was monitored by125I radiolabeling, electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM). The EIS data revealed that the multilayer coating was stable in Tris-HCl (pH 7.35) buffer solution for 21 days. 125I radiolabeling experiments indicated that less than 10% albumin was eluted by PBS in 45 days. Static platelet adhesion experiments indicated that the PEI/albumin deposited on stainless steel could resist platelet adhesion effectively. Such an easy processing and shape-independent method may have good potential for surface modification of cardiovascular devices.  相似文献   

18.
Layer-by-layer deposition of anionic and cationic polyelectrolytes readily converts polymeric ultrafiltration membranes into materials capable of nanofiltration. ATR-FTIR spectra confirm that layer-by-layer deposition occurs on the ultrafiltration substrates, and adsorption of as few as 2.5 bilayers of poly(styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) or 3.5 bilayers of PSS/poly(diallyldimethylammonium chloride) (PDADMAC) reduces the molecular weight cutoff of polyethersulfone ultrafiltration supports from 50 kDa to <500 Da. Deposition of multilayer polyelectrolyte films on 300 and 500 kDa membranes also decreases molecular weight cutoffs, but solute rejections are significantly lower when using these supports, suggesting that the polyelectrolyte films do not completely cover large (0.2-0.4 microm in diameter) pores. On the 50 kDa substrates, PSS/PDADMAC films containing 3.5 bilayers exhibit a 95% rejection of SO(4)(2-) and a chloride/sulfate selectivity of 27, whereas 4.5-bilayer PSS/PAH coatings show a glucose/raffinose selectivity of 100. Pure water flux for [PSS/PAH](3)PSS-coated membranes at 4.8 bar is 1.6 m(3)/(m(2)day), which is more than 2-fold higher than that through a commercial 500 Da membrane.  相似文献   

19.
We employed negatively charged fluorescein (FL), positively charged rhodamine 6G (R6G), and neutral Nile Red (NR) as molecular probes to investigate the influence of Coulombic interaction on their deposition into and rotational mobility inside polyelectrolyte multilayer (PEM) films. The entrapment efficiency of the dyes reveals that while Coulombic repulsion has little effect on dye deposition, Coulombic attraction can dramatically enhance the loading efficiency of dyes into a PEM film. By monitoring the emission polarization of single dye molecules in polyethylenimine (PEI) films, the percentages of mobile R6G, NR, and FL were determined to be 87 +/- 4%, 76 +/- 5%, and 68 +/- 3%, respectively. These mobility distributions suggest that cationic R6G enjoys the highest degree of rotational freedom, whereas anionic FL shows the least mobility because of Coulombic attraction toward cationic PEI. Regardless of charges, this high percentage of mobile molecules is in stark contrast to the 5-40% probe mobility reported from spun-cast polymer films, indicating that our PEI films contain more free volume and display richer polymer dynamics. These observations demonstrate the potential of using isolated fluorescent probes to interrogate the internal structure of a PEM film at a microscopic level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号