首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the dynamics of roller-coaster type experimental models used as analog devices for nonlinear oscillators. It is shown how to chose the shape of the track in order to achieve a desired oscillator equation, in terms of the are length coordinate or its projection onto the horizontal. Explicit calculations are carried out for the linear oscillator, the so-called escape equation, the two-well Duffing oscillator, and the pendulum.  相似文献   

2.
Invariant tori of solutions for nonlinearly coupled oscillators are generalizations of limit cycles in the phase plane. They are surfaces of aperiodic solutions of the coupled oscillators with the property that once a solution is on the surface it remains on the surface. Invariant tori satisfy a defining system of nonlinear partial differential equations. This case study shows that with the help of a symbolic manipulation package, such as MACSYMA, approximations to the invariant tori can be developed by using Galerkin's variational method. The resulting series must be manipulated efficiently, however, by using the Poisson series representation for multiply periodic functions, which makes maximum use of the list processing techniques of MACSYMA. Three cases are studied for the single van der Pol oscillator with forcing parameter =0.5, 1.0, 1.5, and three cases are studied for a pair of nonlinearly coupled van der Pol oscillators with forcing parameters =0.005, 0.5, 1.0. The approximate tori exhibit good agreement with direct numerical integrations of the systems.Contribution of the National Institute of Standards and Technology, a Federal agency. Not subject to copyright.  相似文献   

3.
When blunt bodies are in hypersonic flight, a high-entropy layer of gas with nonzero vorticity is formed near their surface. The transverse gradients of the entropy, density, and gas velocity in the layer are high, which makes it necessary to take into account its absorption by the boundary layer of finite thickness . This vortex interaction is usually accompanied by an increase in the heat flux q and the frictional stress on the wall compared with their values as calculated in accordance with the classical scheme of a thin boundary layer, when the parameters on the outer edge of the boundary layer are set equal to the inviscid parameters on the body. This effect has been investigated on the side surface of slender (with angle 1 to the undisturbed flow) blunt bodies in a hypersonic stream [1–3]. It is shown in the present paper that the effect can have a stronger and even qualitative influence on the flow over blunt bodies with 1 if the radius of curvature Rs of the detached shock wave on the axis is small compared with the midsection radius R of the body. It is shown that the distributions of the heat fluxes with allowance for the vorticity of the inviscid shock layer are similar in the case of slightly blunt (r0/R 0) cones with half-angles less than a critical *.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 50–57, March–April, 1981.  相似文献   

4.
A reduced order cyclic method was developed to compute limit-cycle oscillations for large, nonlinear, multidisciplinary systems of equations. Method efficacy was demonstrated for two simplified models: a typical-section airfoil with nonlinear structural coupling and a nonlinear panel in high-speed flow. The cyclic method was verified to maintain second-order temporal accuracy, yield converged limit cycles in about 10 Newton iterates, and provide precise estimates of cycle frequency. This method was projected onto a low-order space using a set of variables governing the amplitudes of empirically derived modes, which were computed with the proper orthogonal decomposition. In this reduced order form, the cyclic Jacobian was greatly compressed, allowing accurate limit cycle solutions to be very efficiently computed.The U.S. Governments right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   

5.
The effects of critical-layer nonlinearity on spatially growing instability waves on shear layers between parallel streams are discussed. In the two-dimensional incompressible case, the flow in the critical layer is governed by a nonequilibrium (unsteady) nonlinear vorticity equation. The initial exponential growth of the instability wave is converted into algebraic growth during the streamwise aging of the critical layer into a quasi-equilibrium state. A uniformly valid composite formula for the instability wave amplitude, accounting for both nonparallel and nonlinear effects, is shown to be in good agreement with available experimental results. Nonlinear effects occur at smaller amplitudes for the three-dimensional and supersonic cases than in the two-dimensional incompressible case. The instability-wave amplitude evolution is then described by one integro-differential equation with a cubic-type nonlinearity, whose inviscid solution always end in a singularity at finite downstream distance.The US Government has the right to retain a nonexclusive royalty-free license in and to any copyright covering this paper.  相似文献   

6.
Resonant capture describes the behavior of a weakly coupled multi-degree-of-freedom system when two or more of its uncoupled frequencies become locked in resonance. Flow on the region of phase space near the resonance (the resonance manifold) involves a region bounded by a separatrix in the uncoupled (=0) system. Capture corresponds to motions which appear to cross into the interior of the separated region for >0. We offer two approximate methods for estimating which initial conditions lead to capture: an energy method and a perturbation method based on invariant manifold theory. These methods are applied to a model problem involving the spinup of an unbalanced rotor attached to an elastic support.  相似文献   

7.
Attempts to understand human movement systems from the perspective of nonlinear dynamics have increased in recent years, although research has almost exclusively focused on modeling rhythmical movements as limit cycle oscillators. Only a limited amount of work has been undertaken on discrete movements, generally only in the form of numerical simulations and mathematical models. In this paper we briefly overview the key findings from previous research on movement systems as nonlinear dynamical systems, and report data from a behavioral experiment on the coordination observed in a prehension movement under both discrete and rhythmical conditions. In a rhythmical condition subjects grasped dowels in time to a metronomic beat, whereas in a discrete condition a target dowel was grasped within a predetermined movement time. A scanning procedure was implemented to monitor changes in the time of relative final hand closure during hand transport to the dowel. For each condition, a pre-test and post-test of 10 trials were also conducted either side of the scanning trial block. No effects between condition or trial block were noted and there was a large amount of within-subject variability in the coordination data. The findings support previous theoretical modeling suggesting that subject intentionality acts as a more powerful constraint on the intrinsic dynamics of the movement system in discrete compared to rhythmical conditions. The high levels of individual variability were interpreted as being due to the competition between specific and non-specific control parameters (e.g., the subject's intentionality and the metronomic beat). It is concluded that discrete prehension movements appear amenable to a nonlinear dynamical analysis. The data also point to the innovative use of within-subject analyses in future work modeling motor systems as nonlinear dynamical systems.  相似文献   

8.
Manevitch  L.I.  Pervouchine  V.P. 《Meccanica》2003,38(6):669-676
We present a study of localized transversal excitations in a system of weakly nonlinear oscillators coupled by linear bonds. The equations of motion are written in a complex form and then the multi-scale expansion is used. Short wave-length asymptotics have been considered. We have shown that in the case nonlinear Schrodinger equation (NSE) corresponds to the main approximation. This equation, in particular, possesses soliton-like solutions (breathers).  相似文献   

9.
Emaci  E.  Vakakis  A. F.  Andrianov  I. V.  Mikhlin  Yu. 《Nonlinear dynamics》1997,13(4):327-338
We analyze axisymmetric, spatially localized standing wave solutions with periodic time dependence (breathers) of a nonlinear partial differential equation. This equation is derived in the 'continuum approximation' of the equations of motion governing the anti-phase vibrations of a two-dimensional array of weakly coupled nonlinear oscillators. Following an asymptotic analysis, the leading order approximation of the spatial distribution of the breather is shown to be governed by a two-dimensional nonlinear Schrödinger (NLS) equation with cubic nonlinearities. The homoclinic orbit of the NLS equation is analytically approximated by constructing [2N × 2N] Padé approximants, expressing the Padé coefficients in terms of an initial amplitude condition, and imposing a necessary and sufficient condition to ensure decay of the Padé approximations as the independent variable (radius) tends to infinity. In addition, a convergence study is performed to eliminate 'spurious' solutions of the problem. Computation of this homoclinic orbit enables the analytic approximation of the breather solution.  相似文献   

10.
We employ nonsmooth transformations of the independent coordinate to analytically construct families of strongly nonlinear periodic solutions of the harmonically forced nonlinear pendulum. Each family is parametrized by the period of oscillation, and the solutions are based on piecewise constant generating solutions. By examining the behavior of the constructed solutions for large periods, we find that the periodic orbits develop sensitive dependence on initial conditions. As a result, for small perturbations of the initial conditions the response of the system can jump from one periodic orbit to another and the dynamics become unpredictable. An analytical procedure is described which permits the study of the generation of periodic orbits as the period increases. The periodic solutions constructed in this work provide insight into the sensitive dependence on initial conditions of chaotic trajectories close to transverse intersections of invariant manifolds of saddle orbits of forced nonlinear oscillators.  相似文献   

11.
The response of a structure to a simple-harmonic excitation is investigated theoretically and experimentally. The structure consists of two light-weight beams arranged in a T-shape turned on its side. Relatively heavy and concentrated weights are placed at the upper and lower free ends and at the point where the two beams are joined. The base of the T is clamped to the head of a shaker. Because the masses of the concentrated weights are much larger than the masses of the beams, the first three natural frequencies are far below the fourth; consequently, for relatively low frequencies of the excitation, the structure has, for all practical purposes, only three degrees of freedom. The lengths and weights are chosen so that the third natural frequency is approximately equal to the sum of the two lower natural frequencies, an arrangement that produces an autoparametric (also called an internal) resonance. A linear analysis is performed to predict the natural frequencies and to aid in the design of the experiment; the predictions and observations are in close agreement. Then a nonlinear analysis of the response to a prescribed transverse motion at the base of the T is performed. The method of multiple scales is used to obtain six first-order differential equations describing the modulations of the amplitudes and phases of the three interacting modes when the frequency of the excitation is near the third natural frequency. Some of the predicted phenomena include periodic, two-period quasiperiodic, and phase-locked (also called synchronized) motions; coexistence of multiple stable motions and the attendant jumps; and saturation. All the predictions are confirmed in the experiments, and some phenomena that are not yet explained by theory are observed.  相似文献   

12.
The theory of singular surfaces yields a set of coupled evolution equations for the shock amplitude and the amplitudes of the higher order discontinuities which accompany the shock. To solve these equations, we use perturbation methods with a perturbation parameter characterising the initial shock amplitude. It is shown that for decaying shock waves, if the accompanying second order discontinuity is of order one, the straightforward perturbation procedure yields uniformly valid solutions, but if the accompanying second order discontinuity is of order , the method of multiple scales is needed in order to render the perturbation solutions uniformly valid with respect to the distance of travel. We also construct shock wave solutions from modulated simple wave solutions which are obtained with the aid ofHunter & Keller's Weakly Nonlinear Geometrical Optics method. The two approaches give exactly the same results within their common range of validity. The explicit evolution laws thus obtained enable us to see clearly how weak nonlinear curved shock waves are attenuated because of the effects of geometry and material nonlinearity, and on what length scale these effects are most pronounced. Communicated by C. C. Wang  相似文献   

13.
Conclusion We sum up the results regarding the stabilization of the investigated motion. The system (1.2) is stabilizable in the linear approximation if the conditions (2.2) on the parameter are not satisfied, and also in the case 4 if a2230>0. The system (1.2) is stabilizable in the nonlinear approximation for 0=0, 10. The system (1.2) is nonstabilizable in the case 4 if a2230<0. In the remaining cases the investigated motion is nonasymptotically stable.Comparing the results regarding stabilizability and controllability, we note that the relation between these properties is, possibly, more complex than for linear systems, since in the cases 2, 3, in which the necessary conditions for the nonlinear system (1.2) are satisfied, while the sufficient ones are not, we do have a nonasymptotic stability. The further investigation of these cases requires the determination of more general sufficient, possibly necessary and sufficient, conditions of controllability of nonlinear systems; this seems to be possible in any case for systems that are linear with respect to control.In conclusion we note that the critical cases of stabilization as well as the problem of the control of the motion of a rigid body by a reactive force have been investigated long ago (we mention [2, 5]) and, as shown by this paper, they have not been definitively solved and continue to present interest for both theory and practice.Institute of Applied Mathematics and Mechanics, Academy of Sciences of Ukraine, Kiev. University of Science, Sebha, Libya. Translated from Prikladnaya Mekhanika, Vol. 28, No. 9, pp. 73–79, September, 1992.  相似文献   

14.
A class of complex function of rational fraction type is frequently used to describe the dynamical properties of systems. It is however quite difficult to establish a mathematical model of this type on the basis of amplitude and phase frequency data collected from experiments conducted on the related physical system. Since the erection of mathematical model G(j) would involve the solution of a set of nonlinear simultaneous equations with the unknown coefficients ais and bis(i=0, 1, ..., m, ..., n) in G(j). Up to now, these nonlinear equations have been considered to be very difficult to solve directly. In spite of the fact there are special computer programmes in certain software packages available to tackle this problem, it is by no means an easy task due to the complex procedures involved in picking up a set of initial values that should be close enough to the exact solutions. This paper proposes a simplified method of linearizing these nonlinear equations set so that direct solution is possible. The method can also be applied to systems with factors of (j) andej0 in G(j). An illustration by a workable example is furnished at the end of this paper to show its versatility.  相似文献   

15.
两自由度耦合van der Pol振子的拟主振动解   总被引:1,自引:0,他引:1  
本文运用非线性系统的模态方法研究了两自由度耦合van der Pol振子。从退化系统稳定的主振动解出发,得到了原系统的拟主振动解,并给出了系统周期运动的条件,讨论了系统周期解、概周期解的分叉。  相似文献   

16.
The fundamental and subharmonic resonances of a nonlinear cyclic assembly are examined using the asymptotic method of multiple-scales. The system consists of a number of identical cantilever beams coupled by means of weak linear stiffnesses. Assuming beam inextensionality, geometric nonlinearities arise due to longitudinal inertia and the nonlinear relation between beam curvature and transverse displacement. The governing nonlinear partial differential equations are discretized by a Galerkin procedure and the resulting set of coupled ordinary differential equations is solved using an asymptotic analysis. The unforced assembly is known to possess localized nonlinear normal modes, which give rise to a very complicated topological structure of fundamental and subharmonic response curves. In contrast to the linear system which exhibits as many forced resonances as its number of degrees of freedom, the nonlinear system is found to possess a number of additional resonance branches which have no counterparts in linear theory. Some of the additional resonances are spatially localized, corresponding to motions of only a small subset of periodic elements. The analytical results are verified by numerical Poincaré maps, and the forced localization features of the nonlinear assembly are demonstrated by considering its response to impulsive excitations.  相似文献   

17.
The tensorial mechanical model of Farhoudi and Rey (1993) for uniaxial, rodlike, spatially homogeneous and monodomain nematics is modified to describe the microstructural response of discotic nematic network polymers in rectilinear simple shear flow. The particular topological features of the discotic phase are taken into account by a proper modification of the phenomenological parameters. Asymptotic and numerical solutions of the microstructural balance equations indicate the appearance of tumbling, oscillating, and stationary flow regimes as the strength of shear increases, as is the case for rod-like nematic polymers (Marrucci, 1991). The tumbling-oscillating transition is characterized by a diverging tumbling function , while the oscillating-stationary transition is characterized by a single steady value smaller than —1. The stable steady states of the stationary regime are shown to belong to the family of unstable isotropic solutions that exist at small shear rates, and are characterized by a director angle close to, but less than +90° to the flow direction.  相似文献   

18.
A large proportion of constrained mechanical systems result in nonlinear ordinary differential equations, for which it is quite difficult to find analytical solutions. The initial motions method proposed by Whittaker is effective to deal with such problems for various constrained mechanical systems, including the nonholonomic systems discussed in the first part of this paper, where in addition to differential equations of motion, nonholonomic constraints apply. The final equations of motion for these systems are obtained in the form of corresponding power series. Also, an alternative, direct method to determine the initial values of higher-order derivatives \({\ddot{q}}_0 ,{{\dddot{q}{} }}_{\!0} ,\ldots \) is proposed, being different from that of Whittaker. The second part of this work analyzes the stability of equilibrium of less complex, nonholonomic mechanical systems represented by gradient systems. We discuss the stability of equilibrium of such systems based on the properties of the gradient system. The advantage of this novel method is its avoidance of the difficulty of directly establishing Lyapunov functions aimed at such unsteady nonlinear systems. Finally, these theoretical considerations are illustrated through four examples.  相似文献   

19.
Several theorems on the existence of oscillatory, rotary, and mixed periodic motions of n, coupled simple pendulums are proved. These theorems are very general and include subharmonic and ultraharmonic type solutions as well as harmonic type solutions and cover cases of large coupling and disturbances as well as small. The results are also extended to include more general systems of nonlinear oscillators.  相似文献   

20.
For weakly perturbed systems of linear differential equations, we establish conditions for the point = 0 to bifurcate into a set of solutions bounded on the entire axis R in the case where the corresponding unperturbed homogeneous linear differential system is exponentially dichotomous on the semiaxes R + and R . We determine the number of linearly independent solutions bounded on R and give an algorithm for finding these solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号