首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we deal with the oscillatory behavior of solutions of the neutral partial differential equation of the form $$\begin{gathered} \frac{\partial }{{\partial t}}\left[ {p\left( t \right)\frac{\partial }{{\partial t}}(u\left( {x,t} \right) + \sum\limits_{i = 1}^t {p_i \left( t \right)u\left( {x,t - \tau _i } \right)} )} \right] + q\left( {x,t} \right)f_j (u(x,\sigma _j (t))) \hfill \\ = a\left( t \right)\Delta u\left( {x,t} \right) + \sum\limits_{k = 1}^n {a_k \left( t \right)} \Delta u\left( {x,\rho _k \left( t \right)} \right), \left( {x,t} \right) \in \Omega \times R_ + \equiv G \hfill \\ \end{gathered} $$ where Δ is the Laplacian in EuclideanN-spaceR N, R+=(0, ∞) and Ω is a bounded domain inR N with a piecewise smooth boundary δΩ.  相似文献   

2.
For an equation of mixed type, namely, $$ \left( {1 - \operatorname{sgn} t} \right)u_{tt} + \left( {1 - \operatorname{sgn} t} \right)u_t - 2u_{xx} = 0 $$ in the domain {(x, t) | 0 < x < 1, ?α < t < β}, where α, β are given positive real numbers, we study the problem with boundary conditions $$ u\left( {0,t} \right) = u\left( {1,t} \right) = 0, - \alpha \leqslant t \leqslant \beta , u\left( {x, - \alpha } \right) - u\left( {x,\beta } \right) = \phi \left( x \right), 0 \leqslant x \leqslant 1. $$ . We establish a uniqueness criterion for the solution constructed as the sum of Fourier series. We establish the stability of the solution with respect to its nonlocal condition φ(x).  相似文献   

3.
4.
Rudykh  G. A.  Semenov  É. I. 《Mathematical Notes》2001,70(5-6):714-719
In this paper, we obtain new exact non-self-similar solutions of the nonlinear diffusion equation $$\begin{gathered} {\text{ }}u_t = \Delta \ln u, \hfill \\ u \triangleq u\left( {x,t} \right):\Omega \times \mathbb{R}^ + \to \mathbb{R},{\text{ }} x \in \mathbb{R}^n , \hfill \\ \end{gathered} $$ where $\Omega \subset \mathbb{R}^n $ is the domain and $\mathbb{R}^ + = \left\{ {t:0 \leqslant t < + \infty } \right\},{\text{ }}u\left( {x,t} \right) \geqslant 0$ is the temperature of the medium.  相似文献   

5.
We consider the Cauchy problem for the pth order nonlinear Schrödinger equation in one space dimension $$\left\{\begin{array}{ll}iu_{t} + \frac{1}{2} u_{xx} = |u|^{p}, x \in {\bf R}, \, t > 0, \\ \qquad u(0, x) = u_{0} (x), \; x \in {\bf R},\end{array}\right.$$ where \({p > p_{s} = \frac{3 + \sqrt{17}}{2}}\) . We reveal that p = 4 is a new critical exponent with respect to the large time asymptotic behavior of solutions. We prove that if p s p < 4, then the large time asymptotics of solutions essentially differs from that for the linear case, whereas it has a quasilinear character for the case of p > 4.  相似文献   

6.
Let \(T(x) = \sum\limits_{ord(G) \leqq x} {t(G),} \) , wheret(G) define the number of direct factors of a finite Abelian group.E. Krätzel ([5]) defined a remainderΔ 1(x) in the asymptotic ofT(x) and proved $$\Delta _1 (x)<< x^{{5 \mathord{\left/ {\vphantom {5 {12}}} \right. \kern-\nulldelimiterspace} {12}}} \log ^4 x.$$ Using two different methods to estimate a special three-dimensional exponential sum we get the better results $$\Delta _1 (x)<< x^{{{282} \mathord{\left/ {\vphantom {{282} {683}}} \right. \kern-\nulldelimiterspace} {683}}} \log ^4 x$$ and $$\Delta _1 (x)<< x^{{{45} \mathord{\left/ {\vphantom {{45} {109}}} \right. \kern-\nulldelimiterspace} {109}} + \varepsilon } (\varepsilon > 0).$$   相似文献   

7.
This paper deals with decay properties for the solutions of a large class of ordinary differential systems, with time dependent restoring potential, which include the system $$\left({\left|{u\prime}\right|^{\mu - 2} u\prime}\right)\prime+\beta_1 t^{\theta_{\text{1}}}\left|{u\prime}\right|^{\mu-2}u\prime+\beta_2 t^{\theta_{\text{2}}}\left|{u\prime}\right|^{m-2}u\prime+ct^v\left|u\right|^{p-2}u=0,$$ t ε [T, ∞), u : [T, ∞) → $\mathbb{R}^N$ , 1 < µ < m, ν ≥ 0, c0, β10, β2 ≥ 0, -1 ≤ θ1 < µ+ν-1, θ2 < m + ν - 1, and the nonlinear system $$Lu+T\left( t \right)u\prime+V\left( {t,u\prime } \right)+t^\nu Su=e\left(t\right),$$ where L and S are positive definite matrices, T is a skew-symmetric matrix continuous function, V is a quasilinear replacement of a linear resistive term R(t)u′ and e is continuous. We prove various types of decay properties to zero for the solutions in the first case and exponential decay for the difference of two solutions, under suitable assumptions, in the second one.  相似文献   

8.
LetL(x) denote the number of square-full integers not exceedingx. It is well-known that $$L\left( x \right) \sim \frac{{\zeta \left( {{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}{{\zeta \left( 3 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta \left( {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} \right)}}{{\zeta \left( 2 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ whereζ(s) denotes the Riemann Zeta function, LetΔ(x) denote the error function in the asymptotic formula forL(x). On the assumption of the Riemann hypothesis (R.H.), it is known that $$\Delta x = O\left( {x^{13/81 + 8} } \right)$$ for everyε > 0. In this paper, we prove on the assumption of R.H. that $$\frac{1}{x}\int\limits_x^1 {\left| {\Delta \left( t \right)} \right|dt = O\left( {x^{1/10 + ^8 } } \right)} .$$ In fact, we prove a more general result. We conjecture that $$\Delta x = O\left( {x^{1/10 + ^8 } } \right)$$ under the assumption of the R.H.  相似文献   

9.
The following nontrivial estimate is obtained for short exponential sums: $$Sc\left( {\alpha ,x,y} \right) = \sum\limits_{x - y < n \leqslant x} {e\left( {\alpha \left[ {n^c } \right]} \right) < < y\ln ^A x,}$$ where $y \geqslant x^{\tfrac{1} {2}} \ln ^A x,x^{1 - c} y^{ - 1} \ln ^A x \leqslant \left| \alpha \right| \leqslant 0.5$ , c > 2 and ∥c∥ ≥ δ, A is a fixed positive number, and $\delta = \delta \left( {x,c,A} \right) = \left( {2^{\left[ c \right] + 1} - 1} \right)\left( {A + 2.5} \right) \cdot \frac{{\ln \ln x}} {{\ln x}}$ .  相似文献   

10.
For Ω a bounded subset of R n,n 2,ψ any function in Ω with values in R∪{±∞}andθ∈W1,(q i)(Ω),let K(q i)ψ,θ(Ω)={v∈W1,(q i)(Ω):vψ,a.e.and v-θ∈W1,(q i)0(Ω}.This paper deals with solutions to K(q i)ψ,θ-obstacle problems for the A-harmonic equation-divA(x,u(x),u(x))=-divf(x)as well as the integral functional I(u;Ω)=Ωf(x,u(x),u(x))dx.Local regularity and local boundedness results are obtained under some coercive and controllable growth conditions on the operator A and some growth conditions on the integrand f.  相似文献   

11.
In this paper, we obtain bounds for the decay rate in the L r (? d )-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, $$u_t \left( {x,t} \right) = \int_{\mathbb{R}^d } {K\left( {x,y} \right)\left| {u\left( {y,t} \right) - u\left( {x,t} \right)} \right|^{p - 2} \left( {u\left( {y,t} \right) - u\left( {x,t} \right)} \right)dy, x \in \mathbb{R}^d , t > 0.}$$ . We consider a kernel of the form K(x, y) = ψ(y?a(x)) + ψ(x?a(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x) = Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form $$T\left( u \right) = - \int_{\mathbb{R}^d } {K\left( {x,y} \right)\left| {u\left( y \right) - u\left( x \right)} \right|^{p - 2} \left( {u\left( y \right) - u\left( x \right)} \right)dy, 1 \leqslant p < \infty .}$$ . The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ? d : $$\lambda _{1,p} \left( {\mathbb{R}^d } \right) = 2\left( {\int_{\mathbb{R}^d } {\psi \left( z \right)dz} } \right)\left| {\frac{1} {{\left| {\det A} \right|^{1/p} }} - 1} \right|^p .$$ Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ 1,p 1/p as p→∞.  相似文献   

12.
We investigate the asymptotic behaviour as p of sequences of positive weak solutions of the equation $$\left\{\begin{array}{l}-\Delta_p u = \lambda\,u^{p-1}+ u^{q(p)-1}\quad {\rm in}\quad \Omega,\\ u = 0 \quad {\rm on}\quad \partial\Omega,\end{array} \right.$$ where λ > 0 and either 1 < q(p) < p or pq(p), with ${{\lim_{p\to\infty}{q(p)}/{p}=Q\neq1}}$ . Uniform limits are characterized as positive viscosity solutions of the problem $$\left\{\begin{array}{l}\min\left\{|\nabla u (x)| - \max\{\Lambda\,u (x),u ^Q(x)\}, -\Delta_{\infty}u (x)\right\} = 0 \quad {\rm in} \quad \Omega,\\ u = 0\quad {\rm on}\quad \partial\Omega.\end{array}\right.$$ for appropriate values of Λ > 0. Due to the decoupling of the nonlinearity under the limit process, the limit problem exhibits an intermediate behavior between an eigenvalue problem and a problem with a power-like right-hand side. Existence and non-existence results for both the original and the limit problems are obtained.  相似文献   

13.
LetT be a possibly unbounded linear operator in the Banach spaceX such thatR(t)=(t+T)?1 is defined onR +. LetS=TR(I?TR) and letB(.,.) denote the Beta function. Theorem 1.1.T is a scalar-type spectral operator with spectrum in [0, ∞) if and only if $$sup\left\{ {B\left( {k,k} \right)^{ - 1} \int_0^\infty {\left| {x*S^k \left( t \right)x} \right|{{dt} \mathord{\left/ {\vphantom {{dt} t}} \right. \kern-\nulldelimiterspace} t};\left\| x \right\| \leqslant 1,} \left\| {x*} \right\| \leqslant 1,k \geqslant 1} \right\}< \infty .$$ A “local” version of this result is formulated in Theorem 2.2.  相似文献   

14.
We study limit behavior for sums of the form $\frac{1}{|\Lambda_{L|}}\sum_{x\in \Lambda_{L}}u(t,x),$ where the field $\Lambda_L=\left\{x\in {\bf{Z^d}}:|x|\le L\right\}$ is composed of solutions of the parabolic Anderson equation $$u(t,x) = 1 + \kappa \mathop{\int}_{0}^{t} \Delta u(s,x){\rm d}s + \mathop{\int}_{0}^{t}u(s,x)\partial B_{x}(s). $$ The index set is a box in Z d , namely $\Lambda_{L} = \left\{x\in {\bf Z}^{\bf d} : |x| \leq L\right\}$ and L = L(t) is a nondecreasing function $L : [0,\infty)\rightarrow {\bf R}^{+}. $ We identify two critical parameters $\eta(1) < \eta(2)$ such that for $\gamma > \eta(1)$ and L(t) = eγ t , the sums $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ satisfy a law of large numbers, or put another way, they exhibit annealed behavior. For $\gamma > \eta(2)$ and L(t) = eγ t , one has $\sum_{x\in \Lambda_L}u(t,x)$ when properly normalized and centered satisfies a central limit theorem. For subexponential scales, that is when $\lim_{t \rightarrow \infty} \frac{1}{t}\ln L(t) = 0,$ quenched asymptotics occur. That means $\lim_{t\rightarrow \infty}\frac{1}{t}\ln\left (\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)\right) = \gamma(\kappa),$ where $\gamma(\kappa)$ is the almost sure Lyapunov exponent, i.e. $\lim_{t\rightarrow \infty}\frac{1}{t}\ln u(t,x)= \gamma(\kappa).$ We also examine the behavior of $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ for L = e γ t with γ in the transition range $(0,\eta(1))$   相似文献   

15.
Пусть? — возрастающа я непрерывная фцнкци я на [0,π],?(0)=0 и $$\mathop \smallint \limits_0^h \frac{{\varphi \left( t \right)}}{t}dt = O\left( {\varphi \left( h \right)} \right){\text{ }}\left( {h \to 0} \right).$$ Положим $$\psi \left( h \right) = h\mathop \smallint \limits_h^\pi \frac{{\varphi \left( t \right)}}{{t^2 }}dt \left( {h \in (0, \pi ]} \right).$$ Доказывается следую щая теорема.Пусть f∈ С[?π, π], ω(f, δ)=О(?(δ))) и $$\mathop {\lim }\limits_{h \to 0} \frac{1}{{\varphi \left( {\left| h \right|} \right)}}\left| {f\left( {x + h} \right) - f\left( x \right)} \right| = 0$$ для x∈E?[?π, π], ¦E¦>0. Тогда д ля сопряженной функц ии f почти всюду на E выполн яется соотношение $$\mathop {\lim }\limits_{h \to 0} \frac{1}{{\psi \left( {\left| h \right|} \right)}}\left| {\tilde f\left( {x + h} \right) - \tilde f\left( x \right)} \right| = 0.$$ Из этой теоремы вытек ает положительное ре шение одной задачи Л. Лейндлера.  相似文献   

16.
A control system \(\dot x = f\left( {x,u} \right)\) ,u) with cost functional $$\mathop {ess \sup }\limits_{T0 \leqslant t \leqslant T1} G\left( {x\left( t \right),u\left( t \right)} \right)$$ is considered. For an optimal pair \(\left( {\bar x\left( \cdot \right),\bar u\left( \cdot \right)} \right)\) ,ū(·)), there is a maximum principle of the form $$\eta \left( t \right)f\left( {\bar x\left( t \right),\bar u\left( t \right)} \right) = \mathop {\max }\limits_{u \in \Omega \left( t \right)} \eta \left( t \right)f\left( {\bar x\left( t \right),u} \right).$$ By means of this fact, it is shown that \(\eta \left( t \right)f\left( {\bar x\left( t \right),\bar u\left( t \right)} \right)\) is equal to a constant almost everywhere.  相似文献   

17.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

18.
LetL(x) denote the number of square full integers ≤x. By a square-full integer, we mean a positive integer all of whose prime factors have multiplicity at least two. It is well known that $$\left. {L(x)} \right| \sim \frac{{\zeta ({3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2})}}{{\zeta (3)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta ({2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3})}}{{\zeta (2)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ where ζ(s) denotes the Riemann Zeta function. Let Δ(x) denote the error function in the asymptotic formula forL(x). On the basis of the Riemann hypothesis (R.H.), it is known that \(\Delta (x) = O(x^{\tfrac{{13}}{{81}} + \varepsilon } )\) for every ε>0. In this paper, we prove the following results on the assumption of R.H.: (1) $$\frac{1}{x}\int\limits_1^x {\Delta (t)dt} = O(x^{\tfrac{1}{{12}} + \varepsilon } ),$$ (2) $$\int\limits_1^x {\frac{{\Delta (t)}}{t}\log } ^{v - 1} \left( {\frac{x}{t}} \right) = O(x^{\tfrac{1}{{12}} + \varepsilon } )$$ for any integer ν≥1. In fact, we prove some general results and deduce the above from them. On the basis of (1) and (2) above, we conjecture that \(\Delta (x) = O(x^{{1 \mathord{\left/ {\vphantom {1 {12}}} \right. \kern-0em} {12}} + \varepsilon } )\) under the assumption of R.H.  相似文献   

19.
We consider the integral convolution equation on the half-line or on a finite interval with kernel $$K(x - t) = \int_a^b {e^{ - \left| {x - t} \right|s} d\sigma (s)} $$ with an alternating measure under the conditions $$K(x) > 0, \int_a^b {\frac{1}{s}\left| {d\sigma (s)} \right| < + \infty } , \int_{ - \infty }^\infty {K(x)dx = 2} \int_a^b {\frac{1}{s}d\sigma (s) \leqslant 1} .$$ The solution of the nonlinear Ambartsumyan equation $$\varphi (s) = 1 + \varphi (s) \int_a^b {\frac{{\varphi (p)}}{{s + p}}d\sigma (p)} ,$$ is constructed; it can be effectively used for solving the original convolution equation.  相似文献   

20.
Let $h(t,x): = p.v. \sum\limits_{n \in Z\backslash \left| 0 \right|} {\frac{{e^{\pi i(tn^2 + 2xn)} }}{{2\pi in}}} = \mathop {\lim }\limits_{N \to \infty } \sum\limits_{0< \left| n \right| \leqslant N} {\frac{{e^{\pi i(tn^2 + 2xn)} }}{{2\pi in}}} $ ( $(i = \sqrt { - 1;} t,x$ -real variables). It is proved that in the rectangle $D: = \left\{ {(t,x):0< t< 1,\left| x \right| \leqslant \frac{1}{2}} \right\}$ , the function h satisfies the followingfunctional inequality: $\left| {h(t,x)} \right| \leqslant \sqrt t \left| {h\left( {\frac{1}{t},\frac{x}{t}} \right)} \right| + c,$ where c is an absolute positive constant. Iterations of this relation provide another, more elementary, proof of the known global boundedness result $\left\| {h; L^\infty (E^2 )} \right\| : = ess sup \left| {h(t,x)} \right|< \infty .$ The above functional inequality is derived from a general duality relation, of theta-function type, for solutions of the Cauchy initial value problem for Schrödinger equation of a free particle. Variation and complexity of solutions of Schrödinger equation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号