首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A nanocomposite membrane of sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) is proposed for direct methanol fuel cells (DMFCs). The SMMT is clay modified with silane of which the structure consists of a sulfonic acid group for proton conductivity improvement. The micro- and nano-scaled morphologies of the membranes perform the increase in inorganic aggregation with SMMT loading content as confirmed by SEM and AFM. The membrane stability, i.e., the liquid uptake in water and in methanol aqueous solution, as well as the mechanical stability increases with the SMMT loading content whereas thermal stability does not improve significantly. The methanol permeability reduction is obtained when the SMMT loading content increases for various methanol concentrations (1.5–4.5 M). A comparative study of the SPEEK nanocomposite membranes with SMMT and with pristine MMT shows fourfold proton conductivity enhancement after sulfonation. The DMFC single cell tests inform us that all nanocomposite membranes give the significant performance revealed by the plot of current density–voltage and power density.  相似文献   

2.
质子交换膜是直接甲醇燃料电池(DMFC)的关键组成部分. 通过磺化制备了磺化杂萘联苯聚醚酮(SPPEK)、磺化杂萘联苯聚醚砜(SPPES)和磺化杂萘联苯聚醚砜酮(SPPESK)三种含杂萘联苯结构的新质子交换膜, 测试了其热稳定性、质子导电性和甲醇透过性能. SPPESK的热分解温度比相近离子交换容量(IEC)的SPPEK和SPPES约低100 ℃, 三种膜均具有良好的导电和阻醇性能; 分别以三种膜为电解质组装DMFC考察了其性能, DMFC的开路电压随膜的阻醇性的提高而增大, 三种膜的开路电压均高于Nafion115膜, 但在较高电流密度的区域三种新膜的性能均比Nafion115膜差.  相似文献   

3.
Nanocomposite membranes based on polyelectrolyte complex (PEC) of chitosan/phosphotungstic acid (PWA) and different types of montmorillonite (MMT) were prepared as alternative membranes to Nafion for direct methanol fuel cell (DMFC) applications. Fourier transform infrared spectroscopy (FTIR) revealed an electrostatically fixed PWA within the PEC membranes, which avoids a decrease in proton conductivity at practical condition. Various amounts of pristine as well as organically modified MMT (OMMT) (MMT: Cloisite Na, OMMT: Cloisite 15A, and Cloisite 30B) were introduced to the PEC membranes to decrease in methanol permeability and, thus, enhance efficiency and power density of the cells. X-ray diffraction patterns of the nanocomposite membranes proved that MMT (or OMMT) layers were exfoliated in the membranes at loading weights of lower than 3 wt.%. Moreover, the proton conductivity and the methanol permeability as well as the water uptake behavior of the manufactured nanocomposite membranes were studied. According to the selectivity parameter, ratio of proton conductivity to methanol permeability, the PEC/2 wt.% MMT 30B was identified as the optimum composition. The DMFC performance tests were carried out at 70 °C and 5 M methanol feed and the optimum membrane showed higher maximum power density as well as acceptable durability compared to Nafion 117. The obtained results indicated that owing to the relatively high selectivity and power density, the optimum nanocomposite membrane could be considered as a promising polyelectrolyte membrane (PEM) for DMFC applications.  相似文献   

4.
In direct methanol fuel cells (DMFC), methanol crossover is a major issue which has reduced the performance of polymer electrolyte membrane (PEM) for energy generation. In this study, graphene oxide (GO) and conductive polyaniline decorated GO (PANI-GO) were used as additives in fabrication of sulfonated poly(ether ether ketone) (SPEEK) nanocomposite PEM membrane to reduce methanol crossover. PANI-GO was synthesized by in situ polymerization method and the formation of PANI coated GO nanostructures was confirmed by surface morphology and crystallinity analysis. The membrane morphology and topography analysis confirmed that GO and PANI-GO were well dispersed on the surface of SPEEK membrane. 0.1 wt% PANI-GO modified SPEEK nanocomposite membrane exhibited the highest water uptake and ion exchange capacity of 40% and 1.74 meq g?1, respectively. The oxidative stability of the nanocomposite membranes also improved. Lower methanol permeability of 4.33 × 10?7 cm?2S?1 was noticed for 0.1 wt% PANI-GO modified SPEEK membrane. PANI-GO modified SPEEK membrane enhanced the proton conductivity, which was due to the existence of acidic and hydrophilic group present in PANI and GO. PANI-GO modified SPEEK membrane held higher selectivity of 1.94 × 104 S cm?3 s?1. Overall, these studies revealed that PANI-GO modified SPEEK membrane is a potential material for DMFC applications.  相似文献   

5.
以磺化聚醚酰亚胺(SPEI)和聚醚砜(PES)为原料, 采用溶液共混法成功制备出了SPEI/PES共混型质子交换膜,并经热重分析、AFM、SEM等对膜的结构和性能进行了表征. 结果表明, 共混膜较纯SPEI膜具有更高的热稳定性和较低的溶胀性; 在室温环境下, 共混膜在干态和湿态时均具有优异的机械性能; 与纯SPEI膜相比, 共混膜的形态结构更为致密, 这将有利于降低甲醇的渗透性. 采用交流阻抗法和隔膜扩散法分别考察了膜的质子传导性和阻醇性能, 对于共混质量比为50/50的膜来说, 其质子传导率达到了5.5 mS·cm-1的水平, 能满足质子交换膜的需求, 但其甲醇渗透系数明显降低, 仅为市用Nafion 112膜的5%, 这表明该共混膜有望作为一种新型的直接甲醇燃料电池用质子交换膜.  相似文献   

6.
Poly(ether ketone ketone) was sulfonated using fumic sulfuric acid and used for preparation of proton conductive membranes. The sulfonation degree was evaluated by elemental and thermal analysis and the IEC values were determined by titration. The proton conductivity of membranes with sulfonation degrees up to 70% was determined as a function of temperature by impedance spectroscopy. Membranes with sulfonation degree 38–70% were tested in DMFC experiments. Their performance was comparable to Nafion® with the same pretreatment and clearly better than sulfonated poly(ether ether ketone) membranes with similar functionalization. The methanol crossover was lower than that of Nafion® in the same conditions.  相似文献   

7.
A series of proton-conducting membranes were developed for direct methanol fuel cell (DMFC) applications via sulfonation of bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) base membranes. Besides the low manufacture cost, the membranes exhibited an excellent control on methanol crossover and swelling, and a sound balance with high proton conductivities. These can be attributed to the inherent properties of membrane structures: (i) benzyl substitution with bromine, which imparted the membrane stronger hydrophobicity, (ii) cross-linking between BPPO chains, which enhances the dimensional stability and renders the membrane a dense texture, (iii) proper content of sulfonic acid groups, which guarantees the proton conductivity. An optimal membrane was obtained after investigating the effects of the bromination degree and sulfonation process on the performances of corresponding membranes, i.e., the membrane possesses the methanol permeability of 2.64 × 10−8 cm2/s and characteristic factor Φ value of 30 times higher than that of Nafion® 117. The sulfonation process should be controlled within a proper period of time and in mild sulfonation conditions so as to achieve a proton conductivity higher than 0.07 S/cm for potential applications in DMFC.  相似文献   

8.
The preparation and properties of asymmetric poly(vinyldiene fluoride)(PVDF)membranes are described in this study.Membranes were prepared from a casting solution of PVDF,N,N-dimethylacetamide(DMAc)solvent and water- soluble poly(ethylene glycol)(PEG)additives by immersing them in water as coagulant medium.Experiments showed that when PEG molecular weight increased,the changes in the resultant membranes' morphologies and properties showed a transition point at PEG6000.This indicated that PEG with a relati...  相似文献   

9.
Porous membranes having various average pore sizes, ranging from 1 to 4 nm, were prepared from silica–zirconia composite colloidal sols by sol–gel processes, and were used for nanofiltration (NF) experiments in non-aqueous solutions of ethanol and methanol. Silica–zirconia membranes, which were tested in pure alcohol solutions for the first time after the preparation of the membrane, showed a gradual decrease in flux for approximately 100 h and then reached a steady flux. When the feed, after reaching the steady flux with ethanol, was changed to another alcohol, steady flux was attained after only several hours. Ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol (PEG) of various molecular weights (PEG400, 600, 1000, and 2000) were nanofiltrated in methanol and ethanol solutions at 50°C. Rejections in non-aqueous solutions increased with applied pressure, which is similar to aqueous solutions. Control of pore size of silica–zirconia membranes showing molecular weight cut-offs in methanol solutions at 300, 600, 1000, and >1000, respectively, was possible by the appropriate choice of colloidal particle sizes. Rejection in methanol solution showed a tendency similar to that in ethanol solution, while rejection in methanol was slightly larger than in ethanol solutions. In addition, rejection in water was much smaller than in methanol solution. For example, the rejection of PEG600 in water and methanol was 0.03 and 0.74, respectively. These results suggest that solvent type plays an important role in determining rejection, as a result of the interaction with solvents and/or membrane surface.  相似文献   

10.
Sulphonated polystyrene ethylene butylene polystyrene(SPSEBS)prepared with 35%sulphonation was found to be highly elastic and enlarged up to 300%-400%of its initial length.It absorbed over 110%of water by weight.A major drawback of this membrane is its poor mechanical properties which are not adequate for use as polymer electrolytes in fuel cells.To overcome this,SPSEBS was blended with poly(vinylidene fluoride)(PVDF),a hydrophobic polymer.The blend membranes showed better mechanical properties than the base polymer.The effect of PVDF content on water uptake,ion exchange capacity and proton conductivity of the blend membranes was investigated.This paper presents the results of recent studies applied to develop an optimized in-house membrane electrode assembly(MEA)preparation technique combining catalyst ink spraying and assembly hot pressing.Easy steps were chosen in this preparation technique in order to simplify the method,aiming at cost reduction.The open circuit voltage for the cell with SPSEBS is 0.980 V which is higher compared to that of the cell with Nafion 117(0.790 V).From this study,it is concluded that a polymer electrolyte membrane suitable for proton exchange membrane fuel cell(PEMFC)and direct methanol fuel cell(DMFC)application can be obtained by blending SPSEBS and PVDF in appropriate proportions.The methanol permeability and selectivity showed a strong influence on DMFC performance.  相似文献   

11.
Organic/inorganic hybrid membranes based on poly(vinyl alcohol) (PVA) and sulfonated polyhedral oligosilsesquioxane (sPOSS), crosslinked by ethylenediaminetetraacetic dianhydride (EDTAD), were prepared as candidate materials for proton exchange membranes in direct methanel fuel cell (DMFC) applications. Fourier transform infrared (FT‐IR) spectroscopy and ion exchange capacity measurements for the prepared networks clearly revealed sPOSS incorporation. We found that proton conductivity increased and methanol permeability decreased with increasing sPOSS content in the hybrid membrane. In particular, our hybrid membranes demonstrated proton conductivities as high as 0.042 S/cm, which is comparable to that of Nafion?, while exhibiting two orders of magnitude lower methanol permeability as compared to Nafion?. We postulate that the polar sulfonic acid groups of the incorporated sPOSS cages assemble to provide ion conduction paths while the hydrophobic portions of the same sPOSS cages combine to form a barrier to methanol permeation with improved thermal stability of the hybrid membrane. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Acid–base polymer blends for polymer electrolyte membranes have been prepared by blending sulfonated poly(ether ether ketone) (SPEEK) with poly(vinylpyrrolidone) (PVP) to reduce methanol uptake and to decrease methanol permeability while maintaining high proton conductivity. The acid‐base interaction occurring on the sulfonic acid group and on the tertiary amide group was characterized by FTIR and DMA. As the composition of PVP lowered than 20 wt % in the blends, the acid–base interaction causes great reduction on methanol uptake and the methanol permeability; however, the proton conductivity is still high. In this work, membrane–electrode assemblies (MEAs) have been prepared for direct methanol fuel cell (DMFC) from both blend membrane and Nafion 117. DMFC single cell performance was also evaluated. Results confirmed that SPEEK (with the degree of sulfonation (DS) = 69%) blended with PVP (Mn = 1,300,000) with a ratio of 80/20 (w/w) exhibits higher open‐circuit voltages (OCV) and lower polarization loss than those of Nafion 117. These acid–base blends will be suitable for DMFC application. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 565–572, 2006  相似文献   

13.
Abstract

Hydrogels have been prepared from 2-hydroxyethyl methacrylate polymerized in the presence of isocyanate-terminated poly(ethylene glycol) (PEG) crosslinking agents. PEGS of molecular weights 200, 400, and 1000 were investigated. The crosslinked nature of the hydrogels was demonstrated by their insolubility in solvents which normally dissolve poly(HEMA). Hexamethylene diisocyanate (HDI) was mainly used as the isocyanate. The molecular weight of the PEG and the crosslinker content significantly influenced the equilibrium water sorption and mechanical properties of the saturated networks. It was observed that as the molecular weight of the PEG increased, the water sorption increased and the nominal modulus decreased. However, for higher levels of cross-linker, water sorption decreased and modulus increased at low molecular weight PEG; for PEG 1000, water absorption increased as crosslinker content increased. These results are explained by the competing effects of flexibility, crosslink density, and hydrophobicity contributed by the various constituents of the hydrogels.  相似文献   

14.
《先进技术聚合物》2018,29(4):1219-1226
The preparation and characterization of the nanocomposite polyelectrolyte membranes, based on Nafion, sulfonated multi‐walled carbon nanotubes (MWCNT‐SO3H) and imidazole modified multi‐walled carbon nanotubes (MWCNT‐Im), for direct methanol fuel cell applications is described. The results showed that the modification of multi‐walled carbon nanotubes (MWCNT) with proton‐conducting groups (sulfonic acid groups or imidazole groups) could enhance the proton conductivity of the nanocomposite membranes in comparison to Nafion 117. Regarding the interactions between the protonated imidazole groups, grafted on the surface of MWCNT, and the negatively charged sulfonic acid groups of Nafion, new electrostatic interactions can be formed in the interface of the Nafion and MWCNT‐Im, which result in both lower methanol permeability and higher proton conductivity. The physical characteristics of these manufactured nanocomposite membranes were investigated by thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, water uptake, methanol permeability, and ion exchange capacity, as well as proton conductivity. The Nafion/MWCNT‐Im membranes showed the higher proton conductivity, lower methanol permeability, and, as a consequence, a higher selectivity parameter in comparison to the neat Nafion or Nafion membrane containing MWCNT‐SO3H or ─OH functionalized multi‐walled carbon nanotubes (MWCNT‐OH) membranes. The obtained results indicated that the Nafion/MWCNT‐Im membranes could be used as efficient polyelectrolyte membranes for direct methanol fuel cell applications.  相似文献   

15.
In this paper, the design of efficient composite membranes based on sulfonated polysulfone and acidic silica material with characteristics and properties such as methanol barrier, high proton conductivity and suitable fuel cells performance is presented. A positive influence of nanosized acidic silica powders, used as an additive filler in the preparation of composite membranes, due to an efficient hydrophilic inter-distribution inside the membrane when compared to pure silica, is found. A series of different techniques such as XRF, FT-IR, TGA, DSC, IEC and conductivity measurements are used to highlight the properties of acidic silica material and composite membranes. The composite membrane based on acidic silica (SPSf-SiO(2)-S) shows the lowest crossover current (only 8 mA cm(-2)), which is 43% lower than that of a pure SPSf membrane and 33% lower compared to a composite membrane based on bare silica (SPSf-SiO(2)). These significant differences are attributed to the increasing diffusion path length of MeOH/H(2)O clusters in the composite membranes. The maximum DMFC performance at 30 °C is achieved with the SPSf-SiO(2)-S membrane (23 mW cm(-2)), whereas the MEAs based on SPSf-SiO(2) and pure SPSf membranes reached 21 and 16 mW cm(-2), respectively. These significant results of the composite SPSf-SiO(2)-S membrane are ascribed at a good compromise among high proton conductivity, low swelling and low methanol crossover compared to pure SPSf and (unmodified silica)-SPSf membranes. A preliminary short durability test of 100 h performed in a cell with the composite SPSf-SiO(2)-S membrane shows remarkable performance stability during chrono-voltammetric measurements (60 mA cm(-2)) at 30 °C.  相似文献   

16.
Polyelectrolyte complex membranes between chitosan as a cationic polyelectrolyte and poly(acrylic acid) as an anionic species were prepared by blending two polymer solutions in different ratio. Characterization of chitosan-poly(acrylic acid) complex membrane was investigated by Fourier transform-infrared (FT-IR), wide angle X-ray diffractometer, dielectric analyzer. Their mechanical properties were studied by universal testing machine. The swelling of polyelectrolyte membranes was studied. Thermal properties of polyelectrolyte membranes from chitosan and poly(acrylic acid) by varying blend ratios showed a shift in transition temperatures of polyelectrolyte complexes. Polyelectrolyte complex membranes from chitosan and poly(acrylic acid) had pH sensitive characteristics as determined by FT-IR studies and swelling behaviors. Pervaporation performances were investigated with various organic mixtures; water-ethanol, water-isopropanol, methanol-methyl t-butyl ether mixtures. An increase of poly(acrylic acid) content in the polyelectrolyte complex membranes affected the swelling behavior and pervaporation performance of water-ethanol mixture. Permeation flux decreased and the water concentration in the permeate was close to 100% upon increasing the feed alcohol concentration.  相似文献   

17.
Proton-conducting and methanol barrier properties of the proton exchange membrane (PEM), as well as the high cost of direct methanol fuel cell (DMFC) components, are the key determinants of the performance and commercialization of DMFCs. Therefore, this study aimed to develop cost- and performance-effective membranes based on sulphonated poly (vinyl chloride) (SPVC)/poly (2-acrylamido-2-methyl-1-propane sulphonic acid) (PAMPS) blends. Such membranes have been simply prepared by blending SPVC and PAMPS solutions, followed by solvent evaporation via casting. Interaction of SPVC with PAMPS was confirmed by different characterization techniques such as Fourier Transform Infra-red (FTIR) and Raman scattering spectroscopy in which the two characteristic absorption bands of sulfonic groups appeared at 1093 and 1219 cm−1 additionally, strong peaks at around 1656 cm−1 attributed to vibration of amide groups of PAMPS portion in the polymer blend. Furthermore, the interaction of SPVC with PAMPS improves the thermal properties along with ion exchange capacity in turn decreasing the methanol permeability through the membrane in comparison with the SPVC membrane. The IEC of PVC and Nafion 117 membranes were 1.25, 0.91 meq/g; respectively. And the maximum water uptake of PVC and Nafion 117 membranes were 75 and 65.44%; respectively. Methanol permeability value of 7.7 × 10−7 cm2/s which was noticeably lower than the corresponding value recorded for Nafion® (3.39 × 10−6 cm2/s). Therefore, these fabricated membranes can be considered a low-cost efficient candidate for use in DMFC, especially for its capability to resolve the methanol cross-over issue.  相似文献   

18.
A diblock copolymer ionomer containing a rubbery poly(dimethylsiloxane) block has been developed as a proton exchange membrane for direct methanol fuel cell (DMFC). The partially sulfonated polystyrene-b-poly(dimethylsiloxane) (sPS-b-PDMS) membrane with 38% sulfonation degree exhibited 3 times lower methanol permeability and 2.6 times higher membrane selectivity (proton conductivity/methanol permeability) compared to Nafion® 115 at 25 °C. Coexistence of microphase domains and ionic clusters was confirmed from the morphological studies by small-angle X-ray scattering and tapping-mode atomic force microscopy. Gas chromatographic analysis revealed that water/methanol selectivity of sPS-b-PDMS was 20 times higher than that of Nafion® 115. Such a high water/methanol selectivity can be attributed to the existence of PDMS microdomains minimizing methanol permeation through hydrophilic ion channels. sPS-b-PDMS membranes were fabricated into membrane electrode assembly (MEA), and air-breathing DMFC test for these MEAs showed a better performance compared to the MEA composed of Nafion® 115.  相似文献   

19.
The sulfonated polyimide (SPI) membranes for direct methanol fuel cell (DMFC) were synthesized with 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 2,2′-benzidinedisulfonic acid (BDSA), 4,4′-oxydianiline (ODA) through classical two-step methods: (1) preparation of sulfonated poly(amic acid) (SPAA) precursors with different sulfonation levels by controlling the molar ratio of BDSA to ODA, and (2) thermal imidization of the SPAA films. The chemical structure and the imidization from SPAA membranes were characterized by FT-IR with temperature, and the sulfonation levels were determined by elemental analysis. The thermal stability of the membranes was also characterized by TGA. From water uptake and small angle X-ray scattering (SAXS) experiments for different sulfonation levels, it was found that the number of water clusters in SPI membranes increased as the water uptake of membranes increased, but the size of water cluster was not changed with the sulfonation levels. The proton conductivity and the methanol permeability of SPI membrane showed a sudden leap like a percolation phenomenon around 35 mol% of sulfonation level. The SPI membranes exhibited relatively high proton conductivity and extremely low methanol permeability, and showed the feasibility of suitable polymer electrolyte membranes (PEM) for DMFC.  相似文献   

20.
Commercial Nafion 115 membranes were successfully modified by in situ acid-catalyzed polymerization of furfuryl alcohol (PFA) within Nafion structures. FT-IR and AFM were used to characterize the chemical and morphological structures of the Nafion–PFA nanocomposite membrane obtained. The methanol permeation experiments showed that the methanol flux through the Nafion–PFA nanocomposite membranes dropped by a factor of 2.2–2.7 when PFA loading was 3.9–8.0 wt.%. Importantly, the proton conductivity of the membranes decreased only slightly at a low PFA loading (<8 wt.%). The nanocomposite membranes with higher selectivity (e.g., proton conductivity/methanol crossover) achieved a much higher DMFC performance at both room temperature and 60 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号