共查询到19条相似文献,搜索用时 51 毫秒
1.
本文提出了一种求解某类等式约束二次规划问题的一个共轭方向迭代法,并给出了算法的有限终止性证明.同时我们把此算法推广到不等式约束二次规划问题中,从而得到了一种求解不等式约束二次规划问题的算法. 相似文献
2.
本文将正交校正共轭梯度法推广来解只有部分变量带非负约束而其它变量无约束的严格凸二次规划,所建立的新算法的优点是:在迭代过程中,不用求逆矩阵,这样能保持矩阵的稀疏性,数值结果表明:算法对大规模稀疏二次规划问题是可行和有效的. 相似文献
3.
本文提出具有线性等式约束多目标规划问题的一个降维算法.当目标函数全是二次或线性但至少有一个二次型时,用线性加权法转化原问题为单目标二次规划,再用降维方法转化为求解一个线性方程组.若目标函数非上述情形,首先用线性加权法将原问题转化为具有线性等式约束的非线性规划,然后,对这一非线性规划的目标函数二次逼近,构成线性等式约束二次规划序列,用降维法求解,直到满足精度要求为止. 相似文献
4.
5.
给求解无约束规划问题的记忆梯度算法中的参数一个特殊取法,得到目标函数的记忆梯度G o ldste in-L av in tin-Po lyak投影下降方向,从而对凸约束的非线性规划问题构造了一个记忆梯度G o ldste in-L av in tin-Po lyak投影算法,并在一维精确步长搜索和去掉迭代点列有界的条件下,分析了算法的全局收敛性,得到了一些较为深刻的收敛性结果.同时给出了结合FR,PR,HS共轭梯度算法的记忆梯度G o ldste in-L av in tin-Po lyak投影算法,从而将经典共轭梯度算法推广用于求解凸约束的非线性规划问题.数值例子表明新算法比梯度投影算法有效. 相似文献
6.
框式约束凸二次规划问题的内点算法 总被引:4,自引:0,他引:4
张艺 《高等学校计算数学学报》2002,24(2):163-168
In this paper,a primal-dual interior point algorithm for convex quadratic progromming problem with box constrains is presented.It can be started at any primal-dual interior feasible point.If the initial point is close to the central path,it becomes a central path-following alogorithm and requires a total of O(√nL)number of iterations,where L is the input length. 相似文献
7.
基于乘子交替方向法(ADMM)和序列二次规划(SQP)方法思想, 致力于研究线 性约束两分块非凸优化的新型高效算法. 首先, 以SQP思想为主线, 在其二次规划(QP)子问题的求解中引入ADMM思想, 将QP分解为两个相互独立的小规模QP求解. 其次, 借助增广拉格朗日函数和Armijo线搜索产生原始变量新迭代点. 最后, 以显式解析式更新对偶变量. 因此, 构建了一个新型ADMM-SQP算法. 在较弱条件下, 分析了算法通常意义下的全局收敛性, 并对算法进行了初步的数值试验. 相似文献
8.
针对共轭梯度法求解无约束二次凸规划时,在构造共轭方向上的局限性,对共轭梯度法进行了改进.给出了构造共轭方向的新方法,利用数学归纳法对新方法进行了证明.同时还给出了改进共轭梯度法在应用时的基本计算过程,并对方法的收敛性进行了证明.通过实例求解,说明了在求解二次无约束凸规划时,该方法相比共轭梯度法具有一定的优势. 相似文献
9.
10.
一、引言人们一直致力于求解线性规划的单纯形算法的改进工作.1976年,Powell 发表过降低基维数的改进单纯形算法,这个算法是将基矩阵的一个块用基矩阵的其它块的乘积来表示,虽然实现了降低基维数,节省了存贮空间,却增加了计算次数,减慢了计算速度.Sethi and Thompson 针对线性规划问题也提出过竞争和非竞争约束(candidate andnoncandidate constraints)的概念.他们发现,随机生成的实验问题,其总约束中大约只有15%—25%是竞争约束,并提出了一个仅对竞争约束进行旋转运算的单纯形算法.他们的算法,对某些特殊的线性规划提高了求解速度,但并不减少基的维数,并不节省内存空间,增加了程序复杂性.1984年,Sethi and Thompson 又提出 PAPA 算法,再次利用线性规划问题通常只有少量竞争约束这个事实来提高求解速度.但 PAPA 算法往往要在原问题的可行域外运行.况且,上面提到的各种算法,均不能从理论上表明,它们较标准改进单纯形算法到底节省了多少存贮单元和节省了多少计算次数. 相似文献
11.
Recursive quadratic programming is a family of techniques developed by Bartholomew-Biggs and other authors for solving nonlinear programming problems. The first-order optimality conditions for a local minimizer of the augmented Lagrangian are transformed into a nonlinear system where both primal and dual variables appear explicitly. The inner iteration of the algorithm is a Newton-like procedure that updates simultaneously primal variables and Lagrange multipliers. In this way, as observed by Gould, the implementation of the Newton method becomes stable, in spite of the possibility of having large penalization parameters. In this paper, the inner iteration is analyzed from a different point of view. Namely, the size of the convergence region and the speed of convergence of the inner process are considered and it is shown that, in some sense, both are independent of the penalization parameter when an adequate version of the Newton method is used. In other words, classical Newton-like iterations are improved, not only in relation to stability of the linear algebra involved, but also with regard to the ovearll convergence of the nonlinear process. Some numerical experiments suggset that, in fact, practical efficiency of the methods is related to these theoretical results. 相似文献
12.
In [5] Tiu and Wallace have constructed a new class of linear codes called Norm Quadratic Residue code C
p for p> a prime of the form 4n+1 and determined some of its properties. It was shown that C
p p. He further conjectured that C
p = p. In the present correspondence we show that similar construction works for primes of the form 4n-1. We further show that dim
C
p = p for any odd prime p and determine few elementary properties of these codes. 相似文献
13.
雍龙泉 《数学的实践与认识》2009,39(6)
从矩阵的基础知识出发,给出了当目标函数矩阵是严格对角占优阵时,快速地获得0-1二次规划最优解的一个新算法;该方法具有很强的实用性,是此类问题的一个高效求解算法. 相似文献
14.
H. Bernau 《Journal of Optimization Theory and Applications》1990,65(2):209-222
This paper investigates the general quadratic programming problem, i.e., the problem of finding the minimum of a quadratic function subject to linear constraints. In the case where, over the set of feasible points, the objective function is bounded from below, this problem can be solved by the minimization of a linear function, subject to the solution set of a linear complementarity problem, representing the Kuhn-Tucker conditions of the quadratic problem.To detect in the quadratic problem the unboundedness from below of the objective function, necessary and sufficient conditions are derived. It is shown that, when these conditions are applied, the general quadratic programming problem becomes equivalent to the investigation of an appropriately formulated linear complementarity problem.This research was supported by the Hungarian Research Foundation, Grant No. OTKA/1044. 相似文献
15.
16.
Aleksander GRYTCZUK Jarostaw GRYTCZUK 《数学学报(英文版)》2005,21(5):1107-1112
We investigate arithmetic properties of certain subsets of square-free positive integers and obtain in this way some results concerning the class number h(d) of the real quadratic field Q(√d). In particular, we give a new proof of the result of Hasse, asserting that in this case h(d) = 1 is possible only if d is of the form p, 2q or qr. where p.q. r are primes and q≡r≡3(mod 4). 相似文献
17.
S. Cafieri M. D’Apuzzo M. Marino A. Mucherino G. Toraldo 《Journal of Optimization Theory and Applications》2006,129(1):55-75
In this paper, we present an interior-point algorithm for large and sparse convex quadratic programming problems with bound
constraints. The algorithm is based on the potential reduction method and the use of iterative techniques to solve the linear
system arising at each iteration. The global convergence properties of the potential reduction method are reassessed in order
to take into account the inexact solution of the inner system. We describe the iterative solver, based on the conjugate gradient
method with a limited-memory incomplete Cholesky factorization as preconditioner. Furthermore, we discuss some adaptive strategies
for the fill-in and accuracy requirements that we use in solving the linear systems in order to avoid unnecessary inner iterations
when the iterates are far from the solution. Finally, we present the results of numerical experiments carried out to verify
the effectiveness of the proposed strategies. We consider randomly generated sparse problems without a special structure.
Also, we compare the proposed algorithm with the MOSEK solver.
Research partially supported by the MIUR FIRB Project RBNE01WBBB “Large-Scale Nonlinear Optimization.” 相似文献
18.
标准的二次优化问题是NP-hard问题,把该问题转化为半不定的线性规划问题,且提出了一个线性规划的割平面算法来求解这个半不定的线性规划问题,并给出了该算法的收敛性证明. 相似文献
19.
本文主要讨论了二次整数规划问题的线性化方法.在目标函数为二次函数的情况下,我们讨论了带有二次约束的整数规划问题的线性化方法,并将文献中对二次0-1问题的研究拓展为对带有盒约束的二次整数规划问题的研究.最终将带有盒约束的二次整数规划问题转化为线性混合本文主要讨论了二次整数规划问题的线性化方法.在目标函数为二次函数的情况下,我们讨论了带有二次约束的整数规划问题的线性化方法,并将文献中对二次0-1问题的研究拓展为对带有盒约束的二次整数规划问题的研究.最终将带有盒约束的二次整数规划问题转化为线性混合0-1整数规划问题,然后利用Ilog-cplex或Excel软件中的规划求解工具进行求解,从而解决原二次整数规划. 相似文献