首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

The objective of this study was to develop quantitative T-weighted magnetic resonance imaging methodology for the detection and characterization of cartilage degeneration in a rabbit anterior cruciate ligament (ACL) transection model.

Methods

The right knee ACLs of 18 adult female New Zealand white rabbits were transected. The left knee joint served as a sham control. The rabbits were euthanized at 3 (Group 1), 6 (Group 2) and 12 (Group 3) weeks postoperatively. High-resolution 3D fat-saturated spoiled gradient echo images and T-weighted images were obtained in both the sagittal and axial planes at 3 T using a quadrature wrist coil. Following MR analysis, histological slides from the lateral femoral condyle cartilage were graded using the Mankin grading system.

Results

For all three groups, the average overall T values were significantly higher in the ACL-transected knee compared to control knee, and the percentage differences in T values between ACL-transected and control increased with the duration of time after transection. The average Mankin score for ACL-transected knees was higher than that for control for each time point, but this difference was statistically significant only for all groups combined.

Conclusions

This study demonstrates the feasibility of using T-weighted imaging as a useful tool in the detection and quantification of cartilage damage in all knee compartments in an ACL-transected rabbit model of cartilage degeneration.  相似文献   

2.

Background and Purpose

Fluid-sensitive MR imaging in postoperative evaluation is important, however, metallic artifacts is inevitable. The purpose is to investigate the feasibility of fat-saturated slice encoding for metal artifact correction (SEMAC)-corrected T2-weighted magnetic resonance (MR) at 3T in patients with spinal prostheses.

Methods

Following institutional review board approval, 27 SEMAC-encoded spinal MRs between September 2012 and October 2013 in patients with spinal metallic prostheses were analyzed. The MR images were scanned on a 3T MR system including SEMAC-corrected and uncorrected fast spin echo (FSE) T2-weighted MR images with fat-saturation. Two musculoskeletal radiologists compared the image sets and qualitatively analyzed the images using a five-point scale in terms of artifact reduction around the prosthesis, visualization of the prosthesis and pedicle, and intervertebral neural foramina. Quantitative assessments were performed by calculating the ratio of signal intensity from the fixated vertebra and that from upper level vertebra. For statistical analyses, paired t-test was used.

Results

Fat-saturated SEMAC-corrected T2-weighted MR images enabled significantly improved metallic artifact reduction (P < 0.05). Quantitative evaluation of the signal intensity ratio of screw-fixated vertebra and upper level vertebra showed a significantly lower ratio on fat-saturated SEMAC images (P < 0.05), however, the high signal intensity of signal pile-up could be not completely corrected.

Conclusion

SEMAC correction in fat-suppressed T2-weighted MR images can overcome the signal loss of metallic artifacts and provide improved delineation of the pedicle screw and peri-prosthetic region. Signal pile-up, however, could not be corrected completely, therefore readers should be cautious in the evaluation of marrow around the prosthesis.  相似文献   

3.

Purpose

To determine how different methods for calculating T2 affect the resulting T2 values of patellar cartilage.

Materials and Methods

T2-weighted images of patellar cartilage for 10 subjects were acquired using two MRI scanners. T2 values of patellar cartilage were calculated using linear, weighted and nonlinear fitting algorithms for a monoexponential decay equation. T2 values were also calculated for the superficial, middle and deep zones of the cartilage.

Results

All three methods of calculation resulted in significantly different T2 values (P<.0001). The weighted calculation produced the highest T2 values, and the nonlinear calculation produced the lowest T2 values. The average difference of T2 value between the methods was under 5 ms. Similar results were found in a zonal analysis of the tissue. The nonlinear calculation of T2 consistently had the best fit to the acquired data.

Conclusion

The T2 value of patellar cartilage depends on the method of calculation. It is unclear if larger T2 value differences would be seen in subjects diagnosed with osteoarthritis. This study highlights the potential difficulty of comparing different studies with one another based on the method of T2 calculation.  相似文献   

4.

Aim

The purpose of this study was to evaluate the intra- and interexaminer resegmentation precision of patellar cartilage T2 mapping measurements in healthy subjects.

Materials and Methods

T2-weighted images of patellar cartilage for 10 subjects were acquired. Two individuals manually segmented patellar cartilage at each slice location twice, once on each of two separate days. Bulk average and zonal T2 values for the superficial, middle, and deep layers of cartilage were calculated. The root mean square (RMS) and coefficient of variation (COV) were calculated using the repeated measurements of each slice of each subject by each examiner.

Results

The intraexaminer bulk T2 differences were 0.2±1.0 ms, with an RMS error of 0.7 ms and a COV of 1.9%. The differences of interexaminer bulk T2 values was 1.0±1.4 ms, with an RMS error of 1.2 ms and a COV of 3.3%. The superficial zone of cartilage had the highest zonal variability of T2 values. The average interexaminer T2 values for the superficial, middle and deep zones were 42.2±5.6, 38.1±5.3 and 31.9±4.6 ms, respectively.

Conclusion

The interexaminer variability of calculated T2 values highlights the difficulty of interpreting significant differences of T2 values which are similar in magnitude. The repeatability measurements of patellar cartilage T2 values were less than reported intersession T2 repeatability.  相似文献   

5.

Purpose

To include the flip angle distribution caused by the slice profile into the model used for describing the relaxation curves observed in inversion recovery Look–Locker FLASH T1 mapping for a more accurate determination of the relaxation parameters.

Materials and methods

For each inversion time, the flip angle dependent signal of the mono-exponential relaxation model is integrated across the slice profile. The resulting Consideration of Slice Profiles (CSP) relaxation curves are compared to the mono-exponential signal model in numerical simulations as well as in phantom and in-vivo experiments.

Results

All measured relaxation curves showed systematic deviations from a mono-exponential curve increasing with flip angle and T1 but decreasing with repetition time. Additionally, the accuracy of T1 was found to be largely dependent on the temporal coverage of the relaxation curve. All these systematic errors were largely reduced by the CSP model.

Conclusion

The proposed CSP model represents a useful extension of the conventionally used mono-exponential relaxation model. Despite inherent model inaccuracies, the mono-exponential model was found to be sufficient for many T1 mapping situations. However, if only a poor temporal coverage of the relaxation process is achievable or a very precise modeling of the relaxation course is needed as in model-based techniques, the mono-exponential model leads to systematic errors and the CSP model should be used instead.  相似文献   

6.

Purpose

The purpose of this study was to describe magnetic resonance (MR) findings of focal eosinophilic liver disease using gadoxetic acid (Gd-EOB-DTPA).

Materials and Methods

Nineteen patients (M:F=14:5; age range, 26–66 years; mean age, 50 years) with 35 focal eosinophilic liver lesions were included after reviewing the medical records of 482 patients who underwent Gd-EOB-DTPA-enhanced MR imaging (MRI) on a 3.0-T unit between April 2008 and June 2009. The diagnosis of focal eosinophilic liver disease was established by means of percutaneous liver biopsy or surgery and consistent clinical findings. Two radiologists retrospectively reviewed MR images with consensus. Margin, shape and distribution of the lesions were analyzed. We also evaluated signal intensity of focal hepatic lesions on T1- and T2-weighted images and patterns of enhancement in dynamic contrast study.

Results

The mean diameter of the lesions was 1.7 cm (range, 0.7–6.1 cm). Most of the focal eosinophilic liver lesions [n=31/35 (88.6%)] had poorly defined margins. They were usually isointense or slightly hypointense [n=34/35 (97.2%)] on T1-weighted images and hyperintense [n=32/35 (91.4%)] on T2-weighted images. Dynamic study showed enhancement (rim or homogeneous) on the arterial phase [n=21/35 (60%)] and hypointensity on the late venous phase [n=31/35 (88.6%)]. All the lesions were hypointense on the hepatobiliary phase images.

Conclusion

Focal eosinophilic liver lesions tend to be hyperintense on the arterial phase and hypointense on the late venous phase during dynamic study of Gd-EOB-DTPA-enhanced MRI. Although these findings mimic other focal hepatic lesions, poorly defined margins of the lesions and peripheral eosinophilia might help distinguish focal eosinophilic liver disease from other hepatic lesions.  相似文献   

7.

Purpose

The purpose of this study was to evaluate enhancement characteristics of histopathologically confirmed focal nodular hyperplasia (FNHs) with gadoxetic acid-enhanced MRI.

Materials and Methods

Twenty-seven patients with all histopathologically proven FNHs were retrospectively identified. MRI consisted of T1- and T2-weighted (w) sequences with and without fat saturation (FS), multiphase dynamic T1-w images, and FS T1-w images during the hepatobiliary phase. Standard of reference was surgical resection (n = 24) or biopsy (n = 3). Images were analyzed for morphology and contrast behavior including signal intensity (SI) measurement on T1-w images normalized to the pre-contrast base line.

Results

In total 36 FNHs were evaluated. All FNHs showed enhancement in the arterial phase, significant reduction contrast enhancement (“wash-out”) in the late dynamic phases was not present. In the hepatobiliary phase, all FNHs (100%) showed enhancement (overall SI increase, 118% (± 91%), P < 0.001) with at least partial hyperintensity to the liver. Upon visual comparison, 3 of 36 FNHs appeared with heterogeneous/partial enhancement (8%) and 7 (19%) showed rim-accentuated enhancement.

Conclusion

The typical enhancement pattern of FNH with gadoxetic acid consists of arterial hyperperfusion, no wash-out during the venous phase, and at least partial hyperintensity compared to the liver in the hepatobiliary phase. Partial hypointensity or rim-accentuated enhancement rarely occurs.  相似文献   

8.

Purpose

To assess the predictability of the response to radiotherapy of uterine carcinoma, this study retrospectively analyzed dynamic contrast-enhanced magnetic resonance images (DCE-MRI) taken before radiotherapy.

Materials and Methods

Forty-two patients with uterine carcinoma were studied, of whom 22 had adenocarcinoma and 20 had squamous cell carcinoma (SCC). In DCE-MRI analysis, two parameters, SIe and Rdown, were measured. SIe is a median value for the degree of signal intensity change in all selected pixels in the tumor at 1–2 min after contrast agent injection. Rdown is the ratio of the number of down-sloped pixels to that of all selected pixels 3–7 min after injection. The tumor volume reduction rate (TVRR) was measured by MRI-based volumetry in pre- and post-radiotherapy transverse T2-weighted images.

Results

Overall, TVRR was significantly correlated to both SIe (r=0.37, P=.015) and Rdown (r=0.73, P<.0001). In the separate patient groups, SIe but not Rdown was significantly different between the adenocarcinoma and SCC patients (t=3.64, P<.001). TVRR was not correlated to SIe in any group. TVRR was significantly correlated to Rdown in adenocarcinoma patients (r=0.78, P<.001) but not in SCC patients.

Conclusion

SIe may reflect differences in histological characteristics. Rdown may be useful for predicting the response to radiotherapy of uterine carcinoma.  相似文献   

9.

Background and Purpose

The widespread propagation of synchronized neuronal firing in seizure disorders may affect cortical and subcortical brain regions. Diffusion tensor imaging (DTI) can noninvasively quantify white matter integrity. The purpose of this study was to investigate the abnormal changes of white matter in children and adolescents with focal temporal lobe epilepsy (TLE) using DTI.

Materials and Methods

Eight patients with clinically diagnosed TLE and eight age- and sex-matched healthy controls were studied. DTI images were obtained with a 3-T magnetic resonance imaging scanner. The epileptic foci were localized with magnetoencephalography. Fractional anisotropy (FA), mean diffusivity (MD), parallel (λ||) and perpendicular (λ) diffusivities in the genu of the corpus callosum, splenium of the corpus callosum (SCC), external capsule (EC), anterior limbs of the internal capsule (AIC), and the posterior limbs of the internal capsule (PIC) were calculated. The DTI parameters between patients and controls were statistically compared. Correlations of these DTI parameters of each selected structure with age of seizure onset and duration of epilepsy were analysed.

Results

In comparison to controls, both patients' seizure ipsilateral and contralateral had significantly lower FA in the AIC; PIC and SCC and higher MD, λ|| and λ in the EC, AIC, PIC and SCC. The MD, λ|| and λ were significantly correlated with age of seizure onset in the EC and PIC. λ|| was significantly correlated with the duration of epilepsy in the EC and PIC.

Conclusion

The results of the present study indicate that children and adolescents with TLE had significant abnormalities in the white matter in the hemisphere with seizure foci. Furthermore, these abnormalities may extend to the other brain hemisphere. The age of seizure onset and duration of epilepsy may be important factors in determining the extent of influence of children and adolescents TLE on white matter.  相似文献   

10.

Purpose

The purpose was to compare T2* relaxation times and proton density fat-fraction (PDFF) values between brown (BAT) and white (WAT) adipose tissue in lean and ob/ob mice.

Materials and Methods

A group of lean male mice (n=6) and two groups of ob/ob male mice placed on similar 4-week (n=6) and 8-week (n=8) ad libitum diets were utilized. The animals were imaged at 3 T using a T2*-corrected chemical-shift-based water–fat magnetic resonance imaging (MRI) method that provides simultaneous estimation of T2* and PDFF on a voxel-wise basis. Regions of interest were drawn within the interscapular BAT and gonadal WAT depots on co-registered T2* and PDFF maps. Measurements were assessed using analysis of variance, Bonferroni-adjusted t test for multigroup comparisons and the Tukey post hoc test.

Results

Significant differences (P<.01) in BAT T2* and PDFF were observed between the lean and ob/ob groups. The ob/ob animals exhibited longer BAT T2* and greater PDFF than lean animals. However, only BAT PDFF was significantly different (P<.01) between the two ob/ob groups. When comparing BAT to WAT within each group, T2* and PDFF values were consistently lower in BAT than WAT (P<.01). The difference was most prominent in the lean animals. In both ob/ob groups, BAT exhibited very WAT-like appearances and properties on the MRI images.

Conclusion

T2* and PDFF are lower in BAT than WAT. This is likely due to variations in tissue composition. The values were consistently lower in lean mice than in ob/ob mice, suggestive of the former's greater demand for BAT thermogenesis and reflective of leptin hormone deficiencies and diminished BAT metabolic activity in the latter.  相似文献   

11.

Introduction

The bolus-tracking (BT) technique is the most popular perfusion-weighted (PW) dynamic susceptibility contrast MRI method used for estimating cerebral blood flow (CBF), cerebral blood volume and mean transit time. The BT technique uses a convolution model that establishes the input–output relationship between blood flow and the vascular tracer concentration. Singular value decomposition (SVD)- and Fourier transform (FT)-based deconvolution methods are popular and widely used for estimating PW MRI parameters. However, from the published literature, it appears that SVD is more widely accepted than other methods. In a previous article, an FT-based minimum mean-squared error (MMSE) technique was proposed and simulation experiments were performed to compare it with the well-established circular SVD (oSVD) method. In this study, the FT-based MMSE method has been used to estimate relative CBF (rCBF) in 13 patients with white matter lesions (WMLs) (leukoaraiosis), and results are compared with the widely used oSVD method.

Materials and Methods

Thirteen patients with leukoaraiosis were imaged on a 1.5-T Siemens whole-body scanner. After acquiring the localizer and structural scans consisting of FLAIR (fluid attenuated with inversion recovery), T1-weighted and T2-weighted images, perfusion study was implemented as part of the MRI protocol. For each patient and method, two values were calculated: (a) rCBF for normal white matter (NWM) ROI, obtained by dividing the average CBF value in NWM ROI with average CBF in gray matter (GM) ROI, and (b) rCBF for WML ROI, obtained by dividing the average CBF value in WML ROI with average CBF in GM ROI. Results for the two deconvolution methods were computed.

Results and Discussion

A significant (P<.05) decrease in estimated rCBF was observed in the WML in all the patients using the MMSE method, while for the oSVD method, the decrease was observed in all but one patient. Initial results suggest that the MMSE method is comparable to the oSVD method for estimating rCBF in NMW while it may be better than oSVD for estimating rCBF in lesions of low flow. Studies involving a larger patient population may be required to further validate the findings of this work.  相似文献   

12.

Purpose

The goal of this study was to implement time efficient data acquisition and reconstruction methods for 3D magnetic resonance spectroscopic imaging (MRSI) of gliomas at a field strength of 3T using parallel imaging techniques.

Methods

The point spread functions, signal to noise ratio (SNR), spatial resolution, metabolite intensity distributions and Cho:NAA ratio of 3D ellipsoidal, 3D sensitivity encoding (SENSE) and 3D combined ellipsoidal and SENSE (e-SENSE) k-space sampling schemes were compared with conventional k-space data acquisition methods.

Results

The 3D SENSE and e-SENSE methods resulted in similar spectral patterns as the conventional MRSI methods. The Cho:NAA ratios were highly correlated (P<.05 for SENSE and P<.001 for e-SENSE) with the ellipsoidal method and all methods exhibited significantly different spectral patterns in tumor regions compared to normal appearing white matter. The geometry factors ranged between 1.2 and 1.3 for both the SENSE and e-SENSE spectra. When corrected for these factors and for differences in data acquisition times, the empirical SNRs were similar to values expected based upon theoretical grounds. The effective spatial resolution of the SENSE spectra was estimated to be same as the corresponding fully sampled k-space data, while the spectra acquired with ellipsoidal and e-SENSE k-space samplings were estimated to have a 2.36–2.47-fold loss in spatial resolution due to the differences in their point spread functions.

Conclusion

The 3D SENSE method retained the same spatial resolution as full k-space sampling but with a 4-fold reduction in scan time and an acquisition time of 9.28 min. The 3D e-SENSE method had a similar spatial resolution as the corresponding ellipsoidal sampling with a scan time of 4:36 min. Both parallel imaging methods provided clinically interpretable spectra with volumetric coverage and adequate SNR for evaluating Cho, Cr and NAA.  相似文献   

13.

Purpose

The purpose was to investigate the altered hemispheric asymmetry in patients with mesial temporal lobe epilepsy with unilateral hippocampus sclerosis (MTLE/HS).

Materials and methods

This study examined the hemispheric asymmetry of regional gray matter (GM) and white matter (WM) volume among a group of 13 patients with left-sided MTLE/HS, a group of 10 patients with right-sided MTLE/HS and a group of 21 age- and gender- matched healthy controls by optimized voxel-based morphometry (VBM) based on magnetic resonance imaging.

Results

Compared to healthy controls, abnormal asymmetries were detected in the left-sided MTLE/HS patients. The left-sided MTLE/HS patients had more GM asymmetries (L<R) in the temporal lobes, including the inferior temporal gyrus, middle temporal gyrus and parahippocampal gyrus. There was significant asymmetry (L<R) in subcortical WM of the mesial temporal lobe in left-sided MTLE/HS patients. However, no significant difference was detected in terms of GM and WM asymmetry between the group with right-sided MTLE/HS and normal controls.

Conclusion

We should approach hemispheric asymmetry in left- and right-sided MTLE/HS patients differently. The study also demonstrates potential future use of VBM in detecting hemispheric asymmetries and lateralization of brain functions.  相似文献   

14.

Objective

T2 mapping has been used widely in detecting cartilage degeneration in osteoarthritis. Several scanning sequences have been developed in the determination of T2 relaxation times of tissues. However, the derivation of these times may vary from sequence to sequence. This study seeks to evaluate the sequence-dependent differences in T2 quantitation of cartilage, muscle, fat and bone marrow in the knee joint at 3 T.

Methods

Three commercial phantoms and 10 healthy volunteers were studied using 3 T MR. T2 relaxation times of the phantoms, cartilage, muscle, subcutaneous fat and marrow were derived using spin echo (SE), multiecho SE (MESE), fast SE (FSE) with varying echo train length (ETL), spiral and spoiler gradient (SPGR) sequences. The differences between these times were then evaluated using Student's t test. In addition, the signal-to-noise ratio (SNR) efficiency and coefficient of variation of T2 from each sequence were calculated.

Results

The average T2 relaxation time was 36.38±5.76 ms in cartilage and 34.08±6.55 ms in muscle, ranging from 27 to 45 ms in both tissues. The times for subcutaneous fat and marrow were longer and more varying, ranging from 41 to 143 ms and from 42 to 160 ms, respectively. In FSE acquisition, relaxation time significantly increases as ETL increases (P<.05). In cartilage, the SE acquisition yields the lowest T2 values (27.52±3.10 ms), which is significantly lower than those obtained from other sequences (P<.002). T2 values obtained from spiral acquisition (38.27±6.45 ms) were higher than those obtained from MESE (34.35±5.62 ms) and SPGR acquisition (31.64±4.53 ms). These differences, however, were not significant (P>.05).

Conclusion

T2 quantification can be a valuable tool for the diagnosis of degenerative disease. Several different sequences exist to quantify the relaxation times of tissues. Sequences range in scan time, SNR efficiency, reproducibility and two- or three-dimensional mapping. However, when choosing a sequence for quantitation, it is important to realize that several factors affect the measured T2 relaxation time.  相似文献   

15.

Purpose

Our aim was to characterize bi-exponential diffusion signal changes in normal appearing white matter of multiple sclerosis (MS) patients.

Methods

Diffusion parameters were measured using mono-exponential (0–1000 s/mm2) and bi-exponential (0–5000 s/mm2) approaches from 14 relapsing-remitting subtype of MS patients and 14 age- and sex-matched controls after acquiring diffusion-weighted images on a 3T MRI system. The results were analyzed using parametric or nonparametric tests and multiple linear regression models.

Results

Mono-exponential apparent diffusion coefficient (ADC) slightly increased in controls (P=.09), but decreased significantly in MS as a function of age, nonetheless an elevated ADC was observed with increasing lesion number in patients. Bi-exponential analyses showed that the increased ADC is the result of decreased relative volume fraction of slow diffusing component (fs). However, the fast and slow diffusion components (ADCf, ADCs) did not change as a function of either age in controls or lesion number and age in MS patients.

Conclusions

These data demonstrated that the myelin content of the white matter affects diffusion in relapsing-remitting subtype of multiple sclerosis that is possibly a consequence of the shift between different water fractions.  相似文献   

16.

Background

The goal of the study was to assess a T2*-weighted MRI sequence for the ability to identify hepatocellular carcinoma (HCC).

Methods

Hepatic iron deposition, which is common in chronic liver disease (CLD), may increase the conspicuity of HCC on GRE imaging due to increased T2* signal decay in liver parenchyma. In this study, a breath-hold T2*-weighted MRI sequence was evaluated by a blinded observer for HCC and the results compared to a reference standard of gadolinium-enhanced MRI in these same patients. Forty-one patients (mean age 56.2 years; 17 females) were included in this approved, retrospective study.

Results

By the reference standard, 14 of 41 patients had a total of 25 HCCs. The sensitivity of the T2*-weighted MR sequence for identifying HCC, per lesion, was 60%, while the specificity was 100%. There was a significantly lower T2* value of liver parenchyma in patients with HCC identified by the T2*-weighted sequence than in those with HCCs which were not identified by the T2*-weighted sequence (27.8±2.2 vs. 21.9±2.1 ms; P=.02).

Conclusions

A T2*-weighted MRI sequence can identify HCC in patients with CLD. This technique may be beneficial for imaging of patients contraindicated for gadolinium.  相似文献   

17.

Objective

The purpose of this study was to implement clinically feasible imaging techniques for determination of T1, T, and T2 values of the ulnocarpal disc and to assess those values in a cohort of asymptomatic subjects at 3 tesla. Resulting values were compared between different age groups, since former histological findings of the ulnocarpal disc indicated frequent early degenerative changes of this tissue starting in the third decade of life, even in asymptomatic subjects.

Materials and methods

Twenty-seven healthy subjects were included in this study. T1 measurements were performed using 3D spoiled gradient-echo (GRE) sequence with variable flip angle. A series of T and T2-weighted images was acquired by a 3D GRE sequence after suitable magnetization preparation. T1,T, and T2 maps of the ulnocarpal disc were calculated pixel-wise. Representative mean values from extended regions were analysed.

Results

Mean T1 values of the ulnocarpal disc ranged from 722 ms in a 39 year-old subject to 1264 ms in a 65 year-old subject, T ranged from 9.2 ms (26 year-old subject) to 25.9 ms (65 year-old subject). Calculated T2 values showed a large range from 4.1 ms to 22.3 ms. T and T1 values tended to increase with age (p < 0.05), whereas T2 did not.

Conclusions

MR relaxometry of the ulnocarpal disc is feasible, and T1,T1ρ, and T2 values show modest variance in asymptomatic subjects. The potential of relaxation mapping to reveal relevant structural changes in patients has to be investigated in further studies.  相似文献   

18.

Objective

The development of osteoarthritis following traumatic anterior cruciate ligament (ACL) injury is well established. However, few reliable indicators of early osteoarthritic changes have been established, which has limited the development of effective therapies. T and T2 mapping techniques have the ability to provide highly accurate and quantitative measurements of articular cartilage degeneration in vivo. Relating these cartilaginous changes to high-resolution bone-densitometric evaluations of the late-stage osteoarthritic bone is crucial in elucidating the mechanisms of development of traumatic osteoarthritis (OA) and potential therapies for early- or late-stage intervention.

Methods

Twelve rabbits were monitored with in vivo magnetic resonance imaging (MRI) scans following ACL transection surgery with a contralateral leg sham operation. Six of the rabbits were treated with oral doxycycline for the duration of the experiment. At 12 weeks, the excised knees from three animals from each group (n=6 overall) were subjected to micro-computed tomography (CT) analysis.

Results

Consistent with previous studies, initial elevations in T and T2 values in ACL-transected animals were observed with relative normalization towards values see in sham-operated legs over the 12-week study. This biphasic pattern could hold diagnostic potential to differentiate osteoarthritic cartilage by tracking the relative proportions of T and T2 values as they rise with inflammation then fall as collagen and proteoglycan loss leads to further dehydration. The addition of doxycycline resulted in inconclusive, yet potentially interesting, cartilaginous changes in several compartments of the rabbit legs. Micro-CT studies demonstrated decreased bone densitometrics in ACL-transected knees. Correlation studies suggest that the cartilaginous changes may be associated with some aspects of bony change and the development of OA.

Conclusion

We conclude that there are definite relationships between cartilaginous changes as seen on MRI and late-stage microstructural bony changes after traumatic ACL injury in rabbits. In addition, doxycycline may show promise in mitigating early-stage cartilage damage that may serve to lessen late-stage osteoarthritic changes. This study demonstrates the ability to track OA progression and therapeutic efficacy with imaging modalities in vivo.  相似文献   

19.

Purpose

This study was done to test a series of MR sequences for evaluating the sciatic nerve after total hip arthroplasty (THA).

Material and Methods

The study protocol was approved by the institutional review board. Informed consent was obtained from all patients. Twenty-five patients (11 men and 14 women mean age: 62.3±5.7 years) with THA were included in this prospective study. MRI protocol included sequences that were preliminarily tailored for nerve imaging in patients with THA: proton density (PD)-weighted turbo SE, T1-weighted turbo SE (TSE) 3 mm thickness, T1-weighted turbo SE (TSE) 6 mm thickness, T1-weighted turbo SE with high bandwidth (TSE hBW), T2- weighted TSE, T2-weighted with fat saturation and short-tau inversion recovery (STIR). For each sequence, we evaluated the visibility of the sciatic nerve using a semiquantitative score (0=total masking; 1=insufficient visibility; 2=sufficient visibility; 3=optimal visibility). The sum of the scores given to each sequence was divided by the maximal sum, obtaining a percentage visibility index. Friedman and sign tests were used for statistical analysis.

Results

MR examination time was approximately 40 min. No patients reported pain, heat or symptoms related to nerve stimulation. The visibility index ranged between 88% and 70% for the first four sequences. The T1-weighted TSE hBW sequence had the best visibility index (P<.05). The visibility indexes of the first four sequences were significantly higher (P<.004, sign test) than those of the remaining three sequences.

Conclusion

The sciatic nerve could be studied at 1.5 T in patients following THA. The nerve is better visualized with T1-weighted TSE hBW sequences. On T2-weighted sequences and STIR, the visibility of the nerve is low.  相似文献   

20.

Background and Purpose

The present study was designed to detect the abnormalities of the cortical thickness in children with ametropic amblyopia by a computer-aided MRI technique.

Methods

Nine children with ametropic amblyopia and eight age-matched normal controls underwent MRI brain scanning that was performed on a Siemens Avanto 1.5-T scanner, and standard T1-weighted high-resolution anatomic scans of magnetization-prepared rapid gradient echo (MPRAGE) sequence were obtained. For the cortical thickness analysis, 3D MPRAGE images were processed with FreeSurfer software package (http://www.nmr.mgh.harvard.edu/freesurfer/), and the cortical thicknesses were compared between the patient group and the normal control group.

Results

The cortical thicknesses of the lingual and pericalcarine areas in the left hemisphere and of the cuneus, lateraloccipital and lingual areas in the right hemisphere in the amblyopic group were significantly thinner than those of the control group (P<.05).

Conclusion

The changes in cortical thickness of several occipital regions in amblyopic patients may be important in the diagnosis and treatment of this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号