首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Holographic interferometry in the 3 µm wavelength range was developed to measure density profiles in toroidal high-β plasmas. The choice of hydrogen fluoride (HF) laser (2.7 ? 3.1 µm) as a light source meets exactly the requirement of optimal sensitivity of this method within the transparent region of quartz, of which discharge tubes are usually made. Eight strong spectral lines of the HF laser can be used to produce eight superposed holograms on a gelatine detector with almost linear sensitivity by a special method. The method was first applied to investigate the density distribution in a high-β stellarator plasma. An elliptic deformation of the plasma cross-section was observed.  相似文献   

2.
3.
4.
A method is developed for optical processing of photographs of projected fringes, which significantly increases the measurement sensitivity in comparing the macrorelief of diffusely scattering surfaces. The method is tested experimentally in studying the displacements of a thin aluminum plate due to plastic deformation of the surface. A pattern of lines of equal displacement is obtained for a diffusely scattering surface of the plate with an eightfold enhancement of the sensitivity, with the distance between neighboring contour lines reduced to 15 μm. Zh. Tekh. Fiz. 67, 67–72 (March 1997)  相似文献   

5.
A theoretical analysis of a downstream-mixing 16-μm CO2 gasdynamic laser revealed the possibility of utilizing the downstream-mixing scheme for the generation of 9.4-μm radiation using a CO2 gasdynamic laser. The flow-field has been analyzed using complete two-dimensional, unsteady laminar form of Navier-Stokes equations coupled with the finite rate vibrational kinetic equations. The analysis showed that integrated small-signal gain of 11.5m−1 for Lorentzian broadening and 4.8m−1 considering Voigt function can be obtained for N2 reservoir temperature of 2000°K and velocity ratio 1:1 between the CO2 and N2 mixing streams. These results (presented in graphs) clearly highlight the large potential of downstream-mixing CO2 gasdynamic laser for 9.4-μm laser generation.  相似文献   

6.
Experimental investigations on ablatively accelerated thin plastic foil targets irradiated by a 6J, 5 nsec Nd: glass laser pulse, were conducted using shadowgraphy technique. A 2 nsec, 0.53 μm probe pulse, derived from the main laser was used for recording the foil motion. It was observed that 6 μm plastic foils could be accelerated to a velocity of about 3 × 106 cm/sec for an incident laser intensity of 5 × 1013 W/cm2 and the corresponding ablation pressure was 0.4 Mbar. Ablation pressure (P) scaling against absorbed laser intensity (I a ) was slower (PI a 0.4 ) for a smaller laser focal spot (30 μm) as compared to the scaling (PI a 0.7 ) for a larger focal spot (500 μm). This result has been explained considering the loss due to lateral energy transport from the laser plasma interaction region.  相似文献   

7.
In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 µm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.  相似文献   

8.
If a laser beam illuminates a continual deformation object surface, it will lead to a temporal speckle pattern on the observation plane. Recording this time-dependent speckle pattern the deformation of the surface of an object can be obtained. Two methods, scanning phase method (SPM) and time sequence phase method (TSPM), have been introduced for measuring the displacement caused by the deformation in temporal speckle pattern interferometry (TSPI). Their principle is that by capturing a series of speckle interference patterns related to the object deformations, the fluctuations in the intensity of the interference patterns can be obtained. Through scanning these fluctuations and estimating both the average intensity and modulation of the temporal speckle interference patterns, the phase maps for whole-field displacements are calculated. In this way one is capable of quantitatively measuring continual displacements simply using a conventional electronic speckle pattern interferometry (ESPI) system without phase shifting or a carrier. The elaboration on the new methods is given in this paper and experiments are performed to demonstrate their performance with a conventional ESPI system.  相似文献   

9.
Thermal diffusivity of laser micro- and nano-structured regions in polymethylmethacrylate (PMMA) was measured by the temperature wave method with a lateral resolution reduced to ~10 μm using an array of micro-sensors. The volume fraction of laser modified phase was maximized by implementing tightly focused femtosecond laser pulses inside PMMA and maintaining distance of few micrometers between the irradiation spots. The absolute value of thermal diffusivity of PMMA 1.066±0.08×10?7 m2/s was reliably determined with the miniaturized sensors. Regions laser structured by single pulses had no trace of carbonization, almost the same thermal diffusivity as the host PMMA, and a stress-induced birefringence Δn~10?4 modulated with period ~2 μm.  相似文献   

10.
We applied proton microbeam particle‐induced X‐ray emission (µ‐PIXE) for mapping Ca, Zr, Ba and Yb, and atomic force microscopy (AFM) for imaging the surface landscape of a dental composite which releases Ca2+ and F? for the protection of hard dental tissues. Three areas ~250 × 250 µm2 located ~0.5–2 mm apart on a smooth surface specimen were mapped with 3.1 MeV protons focused to a ~3.0 µm spot and at ~3.9 µm pixel size sampling. The maps evidenced particles with diameters of 3.2–32 µm (Ca), 20–60 µm (Zr), ≤ 4 µm (Ba) and 10–50 µm (Yb). Cross‐section area histograms of Ca‐rich particles fitted with 2–6 Poisson functions revealed a polydisperse size distribution and substantial differences from an area to another, possibly implying large local variations of Ca2+ released in the hard tissue near a dental filling of a few millimeters in diameter. Such imbalances may lead to low local Ca2+ protection of the dental tissue, favoring the onset of secondary caries. Similarly, AFM images showed high zone‐dependent differences in the distributions of grains with apparent diameters of 1–4 µm, plausibly recognized as Ca‐ and Ba‐containing particles. In a simple model based on demineralization data, lateral diffusion of Ca2+ between adjacent domains containing high‐ and low‐area Ca‐rich grains is described by exponential concentration gradients. These gradients may generate appreciable electromotive forces, which may enhance electrochemically the local tissue demineralization. Similar effects are to be expected in the protective action of F? ions released from microgranules of YbF3 and of Ba fluoroaluminosilicate glass. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The behavior of Young’s modulus E and the decrement of ultrasonic vibrations δ in a V-4Ti-4Cr alloy is studied during proton (8-MeV protons, dose rate 104 Gy/s) or IR laser (YAG: Nd3+ laser, wavelength 1.06 μm, intensity up to 102 W/cm2) irradiation. Measurements are performed using the method of a composite piezoelectric oscillator (longitudinal 100-kHz resonance vibrations). The sizes of the irradiated surface regions of a sample in the proton and laser experiments are the same in order to provide the same thermal conditions in the sample-quartz transducer system. The amplitude, time, and temperature dependences of E and δ are measured before and after preliminary plastic deformation, as well as before, during, and after irradiation of a sample. The process of postdeformation aging (the kinetics of recovery of internal friction after deformation) during proton irradiation is shown to differ substantially from that during laser irradiation. The specific features detected can be explained by the more intense evolution of the defect structure during proton irradiation. Analysis shows that radiation annealing is related to the ionizing component of proton irradiation, which excites the electronic subsystem of the metallic alloy and, thus, creates hot electrons and plasmons. The electron excitations relax at lattice defects (dislocations) and increase the dislocation mobility; this results in a relatively rapid decrease in the dislocation density and in a more significant (as compared to the laser irradiation) decrease in the level of internal stresses in the material. __________ Translated from Fizika Tverdogo Tela, Vol. 46, No. 8, 2004, pp. 1409–1415. Original Russian Text Copyright ? 2004 by Kardashev, Plaksin, Stepanov, Chernov.  相似文献   

12.
The electrode reaction was examined on ceria coated YSZ by a platinum point electrode in H2-H2O atmosphere at 973 K- 1173 K. The thickness of the ceria coating layer was altered from 0 to 2.5 μm, fabricated by a laser ablation and by a vacuum vapor deposition method on YSZ single crystals. The electrode / electrolyte interface conductivity increased with 1/4 powers ofp(H2) andp(H2O) on both ceria coated and non-coated YSZ. The interface conductivity was significantly improved on a thicker ceria coating surface than 1 μm. The effective electrode reaction radius also increased in a thick ceria coating. The18O/16O exchange experiment at low oxygen partial pressure revealed that the oxygen surface exchange rate of ceria is not high compared with that of YSZ. It can be concluded that the bulk ionic conduction of ceria makes a more effective contribution to the electrode reaction than the surface catalytic activity in H2-H2O atmosphere. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 13–19, 1997  相似文献   

13.
Microplastic deformation in a magnetic field and in a zero field, as well as after preliminary action of a magnetic field on C60 crystals, is studied with the help of a laser interferometer, which makes it possible to measure the strain rate on the basis of linear displacements of 0.15 µm. It is shown that the introduction of a sample into the field and its removal from a field of 0.2 T directly during sample deformation lead to a change in the strain rate, the decrease in the rate being accompanied by a brief interruption of deformation. The sign of the effect depends on temperature: the magnetic field accelerates deformation at room temperature and slows it down at 100 K. Preliminary holding of a sample in a field of 0.2 or 2 T produces a similar effect on the strain rate. Possible reasons for the observed manifestations of the magnetoplastic effect in C60 and the relation between the sign of the effect and the phase transition at 260 K are considered.  相似文献   

14.
We have observed efficient multiphoton excitation of CH3OH molecules by broadband pulsed YSGG:Cr:Er-laser radiation (λ=2.7 µm,τ p =60 ns, and Δνlas~1.5 cm?1) at fluences of 0.3-600 J/cm2 under collisional and collisionless conditions. Multiphoton dissociation of CH3OH has been realized. We discuss the role of intermode interaction, the intensity of the laser radiation, and the laser bandwidth in the excitation process.  相似文献   

15.
This paper presents a front-tracking method for studying the large deformation of a liquid capsule enclosed by a thin shell in a shear flow. The interaction between the fluid and the shell body is accomplished through an implicit immersed boundary method. An improved thin-shell model for computing the forces acting on the shell middle surface during the deformation is described in surface curvilinear coordinates and within the framework of the principle of virtual displacements. This thin-shell model takes full account of in-plane tensions and bending moments developing due to the shell thickness and a preferred three-dimensional membrane structure. The approximation of the shell middle surface is performed through the use of the Catmull–Clark subdivision surfaces. The resulting limit surface is C2-continuous everywhere except at a small number of extraordinary nodes where it retains C1 continuity. The smoothness of the limit surface significantly improves the ability of our method in simulating capsules enclosed by hyperelastic thin shells with different shapes and physical properties. The present numerical technique has been validated by several examples including an inflation of a spherical shell and deformations of spherical, ellipsoidal and biconcave capsules in the shear flow. In addition, different types of motion such as tank-treading, swinging, tumbling and transition from tumbling to swinging have been studied over a range of shear rates, viscosity ratios and bending modulus.  相似文献   

16.
We report on the application of ESPI to measure deformations induced by thermal load on lightweight honeycomb panels for space applications. The panel was mounted isostatically onto a vibration isolated table. A housing for temperature stabilisation was constructed enclosing the panel, heating elements, fans and the ESPI-head made of Invar. Emphasis is put on the quantitative analysis of the deformation of this large object (0.8×0.8 m2) viewed from a relatively short distance of 1.1 m and illuminated sequentially from three non-orthogonal directions. Influences of laser stability, rigid body displacements, temperature inhomogeneities as well as possible deformations of the measurement head are discussed in order to derive the measurement uncertainty and to estimate corrections. Beside the sensitivity vector analysis it is important to take into account the optical light path changes due to temperature changes. Out-of-plane deformation fields of the panel are presented.  相似文献   

17.
The spectra and dynamics of the line emission of a lead erosion laser plasma at a distance of 1 mm from the target are investigated. The plasma is ignited in a vacuum (P=3–12 Pa) with a pulse-periodic neody-mium laser (τ=20 ns, f=12 Hz, W=(1–2)×109 W/cm2, and λ=1.06 µm). The data obtained are used to analyze the emission dynamics and the mechanism of formation of the laser plume.  相似文献   

18.
《X射线光谱测定》2005,34(1):56-58
A special method of specimen preparation is described aimed at achieving a small size of the order of 50 µm. The difficulty is especially great when preparing droplet residues from natural water on a silicon wafer as a supporting material for this experiment. We report the first promising results using an HF etching method to obtain a hydrophobic silicon surface. A specimen (residue) size of ~ 80 µm was obtained on the modified silicon surface, making wavelength‐dispersive total reflection x‐ray fluorescence (WD‐TXRF) analysis possible for a standard reference sample of natural water (TMDA 53.2). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Aluminum-lithium alloy 1420, which, after equal-channel angular pressing, has a grain size of about 3 μm, is shown to possess superplasticity in a temperature range of T=320–395°C upon tension at a constant relative strain rate of 10−2–10−3 s−1. The axial deformation at fracture can exceed 1800%. The data processing at such large deformations should be carried out using true strains ɛt and stresses σt. In the flow curve, a short stage of hardening is followed by a long softening stage. They can be described by the relation with a constant exponent n≈2 and activation energies U≈1 eV for the softening stage and U≈1.4 eV for the hardening stage. The deformation is supposed to be controlled by grain-boundary sliding at the stage of softening and by self-diffusion in the bulk of grains at the hardening stage. __________ Translated from Fizika Tverdogo Tela, Vol. 43, No. 5, 2001, pp. 833–838. Original Russian Text Copyright ? 2001 by Myshlyaev, Prokunin, Shpeizman.  相似文献   

20.
The effect of high-intensity femtosecond laser pulses (100–200 fs) in the near (0.8–1.8 μm) and medium (4.6–5.8 μm) IR ranges on the CF2HCl, CF3H, (CF3)2C=C=O, and C4F9COI molecules is examined. Irradiation of CF2HCl and CF3H molecules by 0.8-to 1.8-μm laser pulses with intensities of >40 TW/cm2 (>4 × 1013 W/cm2) makes them dissociate to yield CF3H and CF4, respectively. The key mechanism of the dissociation of these molecules is field ionization and fragmentation. The excitation of the stretching vibrations of the C=O bond in the (CF3)2C=C=O and C4F9COI molecules by 4.5-to 5.8-μm femtosecond pulses produced no detectable dissociation up to a fluence of ∼0.5 J/cm2 (or a intensity of ∼2.5 TW/cm2). Probable explanations of this observation are discussed. Original Russian Text ? V.M. Apatin, V.O. Kompanets, V.B. Laptev, Yu.A. Matveets, E.A. Ryabov, S.V. Chekalin, V.S. Letokhov, 2007, published in Khimicheskaya Fizika, 2007, Vol. 26, No. 4, pp. 18–25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号