首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(R)-[1-(Dimethylamino)ethyl]benzene reacts with nBuLi in a 1:1 molar ratio in pentane to quantitatively yield a unique hetero-aggregate (2 a) containing the lithiated arene, unreacted nBuLi, and the complexed parent arene in a 1:1:1 ratio. As a model compound, [Li(4)(C(6)H(4)CH(Me)NMe(2)-2)(2)(nBu)(2)] (2 b) was prepared from the quantitative redistribution reaction of the parent lithiated arene Li(C(6)H(4)CH(Me)NMe(2)-2) with nBuLi in a 1:1 molar ratio. The mono-Et(2)O adduct [Li(4)(C(6)H(4)CH(Me)NMe(2)-2)(2)(nBu)(2)(OEt(2))] (2 c) and the bis-Et(2)O adduct [Li(4)(C(6)H(4)CH(Me)NMe(2)-2)(2)(nBu)(2)(OEt(2))(2)] (2 d) were obtained by re-crystallization of 2 b from pentane/Et(2)O and pure Et(2)O, respectively. The single-crystal X-ray structure determinations of 2 b-d show that the overall structural motifs of all three derivatives are closely related. They are all tetranuclear Li aggregates in which the four Li atoms are arranged in an almost regular tetrahedron. These structures can be described as consisting of two linked dimeric units: one Li(2)Ar(2) dimer and a hypothetical Li(2)nBu(2) dimer. The stereochemical aspects of the chiral Li(2)Ar(2) fragment are discussed. The structures as observed in the solid state are apparently retained in solution as revealed by a combination of cryoscopy and (1)H, (13)C, and (6)Li NMR spectroscopy.  相似文献   

2.
Lu TT  Tsou CC  Huang HW  Hsu IJ  Chen JM  Kuo TS  Wang Y  Liaw WF 《Inorganic chemistry》2008,47(13):6040-6050
The anionic syn-/ anti-[Fe(mu-SEt)(NO) 2] 2 (-) ( 2a) were synthesized and characterized by IR, UV-vis, EPR, and X-ray diffraction. The geometry of the [Fe(mu-S) 2Fe] core is rearranged in going from [{Fe(NO) 2} (9)-{Fe(NO) 2} (9)] Roussin's red ester [Fe(mu-SEt)(NO) 2] 2 ( 1a) (Fe...Fe distance of 2.7080(5) A) to the [{Fe(NO) 2} (9)-{Fe(NO) 2} (10)] complex 2a (Fe...Fe distance of 2.8413(6) A) to minimize the degree of Fe...Fe interaction to stabilize complex 2a. On the basis of X-ray absorption (Fe K- and L-edge), EPR and SQUID, complex 2a is best described as the anionic [{Fe(NO) 2} (9)-{Fe(NO) 2} (10)] Roussin's red ester with the fully delocalized mixed-valence core. The complete bridged-thiolate cleavage yielded DNIC [(EtS) 2Fe(NO) 2] (-) ( 3a) in the reaction of 2 equiv of [EtS] (-) and complex 1a, whereas reaction of 2 equiv of [(t)BuS] (-) with [Fe(micro-S (t)Bu)(NO) 2] 2 (1b) gave DNIC [((t)BuS) 2Fe(NO) 2] (-) (3b) and the anionic Roussin's red ester [Fe(mu-S (t)Bu)(NO) 2] 2 (-) (2b) through bridged-thiolate cleavage in combination with reduction. In contrast to the inertness of DNIC 3b toward complex 1b, nucleophile DNIC 3a induces the reduction of complex 1a to produce the anionic Roussin's red ester 2a. Interestingly, dissolution of complex 3a in MeOH at 298 K finally led to the formation of a mixture of complexes 2a and 3a, in contrast to the dynamic equilibrium of complexes 3b and 1b observed in dissolution of complex 3b in MeOH. These results illustrate the aspect of how the steric structures of nucleophiles ([EtS] (-) vs [ (t)BuS] (-) and [(EtS) 2Fe(NO)2](-) vs [((t)BuS) 2Fe(NO)2] (-)) function to determine the reaction products.  相似文献   

3.
Cai H  Yu X  Chen S  Qiu H  Guzei IA  Xue ZL 《Inorganic chemistry》2007,46(19):8071-8078
M(NMe2)4 (M = Zr, 1a; Hf, 1b) and the silyl anion (SiButPh2)- (2) in Li(THF)2SiButPh2 (2-Li) were found to undergo a ligand exchange to give [M(NMe2)3(SiButPh2)2]- (M = Zr, 3a; Hf, 3b) and [M(NMe2)5]- (M = Zr, 4a; Hf, 4b) in THF. The reaction is reversible, leading to equilibria: 2 1a (or 1b) + 2 2 <--> 3a (or 3b) + 4a (or 4b). In toluene, the reaction of 1a with 2 yields [(Me2N)3Zr(SiButPh2)2]-[Zr(NMe2)5Li2(THF)4]+ (5) as an ionic pair. The silyl anion 2 selectively attacks the -N(SiMe3)2 ligand in (Me2N)3Zr-N(SiMe3)2 (6a) to give 3a and [N(SiMe3)2]- (7) in reversible reaction: 6a + 2 2 <--> 3a + 7. The following equilibria have also been observed and studied: 2M(NMe2)4 (1a; 1b) + [Si(SiMe3)3]- (8) <--> (Me2N)3M-Si(SiMe3)3 (M = Zr, 9a; Hf, 9b) + [M(NMe2)5]- (M = Zr, 4a; Hf, 4b); 6a (or 6b) + 8 <--> 9a (or 9b) + [N(SiMe3)2]- (7). The current study represents rare, direct observations of reversible amide-silyl exchanges and their equilibria. Crystal structures of 5, (Me2N)3Hf-Si(SiMe3)3 (9b), and [Hf(NMe2)4]2 (dimer of 1b), as well as the preparation of (Me2N)3M-N(SiMe3)2 (6a; 6b) are also reported.  相似文献   

4.
Anandhi U  Sharp PR 《Inorganic chemistry》2004,43(21):6780-6785
The pK(a) values in DMSO of the monoprotic complexes [(L(2)Pt)(2)(mu-OH)(mu-NMePh)](2+) (4) (L(2) = Ph(2)PCH(2)CH(2)PPh(2) (dppe), Ph(2)PCMe(2)PPh(2) (dppip)) are 11.9 +/- 0.1 (L(2) = dppe) and 13.5 +/- 0.2 (L(2) = dppip) as determined by (31)P NMR equilibrium titration with bases of known pK(a). Complexes 4 were prepared by treatment of [L(2)Pt(mu-OH)](2)(2+) (1) with N-methylaniline. The oxo complexes [(L(2)Pt)(2)(mu-O)(mu-NMePh)](+), formed in the equilibrium titration reactions, were independently synthesized in THF by deprotonation of [(L(2)Pt)(2)(mu-OH)(mu-NMePh)](2+) with NaN(SiMe(3))(2) and characterized as NaBF(4) adducts. Similar experiments with diprotic [L(2)Pt(mu-OH)](2)(2+) (L(2) = dppe, Ph(2)PCH(2)CH(2)CH(2)PPh(2) (dppp)) were complicated by exchange processes and were less conclusive, giving pK(a1) < 18 and pK(a2) > 18 in DMSO.  相似文献   

5.
The reactions between cis-Fe(dmpe)2H2 (dmpe = Me2PCH2CH2PMe2) (1) or cis-Fe(PP3)H2 (PP3 = P(CH2CH2PMe2)3) (2) and carbon dioxide (CO2), carbon disulfide (CS2), and carbonyl sulfide (COS) are investigated. At 300 K, additions of CO2 (1 atm), CS2 (2 equiv), and COS (1 atm) to 1 result in the formation of a stable transformato hydride, trans-Fe(dmpe)2(OCHO)H (3a), a trans-dithioformato hydride, trans-Fe(dmpe)2(SCHS)H (4a), and a trans-thioformato hydride, trans-Fe(dmpe)2(SCHO)H (5a), respectively. When CS2 and COS are added to cis-Fe(dmpe)2H2 at 195 K, a cis-dithioformato hydride, 4b, and a cis-thioformato hydride, 5b, respectively, are observed as the initially formed products, but there is no evidence of the corresponding cis-formato hydride upon addition of CO2 to cis-Fe(dmpe)2H2. Additions of excess CO2, CS2, and COS to 1 at lower temperatures (195-240 K) result in the formation of a trans-bis(formate), trans-Fe(dmpe)2(OCHO)2 (3b), a trans-bis(dithioformate), trans-Fe(dmpe)2(SCHS)2 (4c), and a cis-bis(thioformate), cis-Fe(dmpe)2(SCHO)2 (5c), respectively. trans-Fe(dmpe)2(SCHO)2 (5d) is prepared by the addition of excess COS at 300 K. Additions of CO2 (1 atm), CS2 (0.75 equiv), and COS (1 atm) to 2 at 300 K result in the formation of a thermally stable, geometrically constrained cis-formato hydride, cis-Fe(PP3)(OCHO)H (6a), a cis-dithioformato hydride, cis-Fe(PP3)(SCHS)H (7a), and a cis-thioformato hydride, cis-Fe(PP3)(SCHO)H (8a), respectively. Additions of excess CO2 and COS to 2 yield a cis-bis(formate), cis-Fe(PP3)(OCHO)2 (6b), and a thermally stable cis-bis(thioformate), cis-Fe(PP3)(SCHO)2 (8b), respectively. All complexes are characterized by multinuclear NMR spectroscopy, with IR spectroscopy and elemental analyses confirming structures of thermally stable complexes where possible. Complexes 3b and 5a are also characterized by X-ray crystallography.  相似文献   

6.
The two-electron oxidation of the lithium salts of the heterodichalcogenidoimidodiphosphinate anions [(EP (i)Pr 2)(TeP (i)Pr 2)N] (-) ( 1a, E = S; 1b, E = Se) with iodine yields cyclic cations [(EP (i)Pr 2)(TeP (i)Pr 2)N] (+) as their iodide salts [(SP (i)Pr 2)(TeP (i)Pr 2)N]I ( 2a) and [(SeP (i)Pr 2)(TeP (i)Pr 2)N]I ( 2b). The five-membered rings in 2a and 2b both display an elongated E-Te bond as a consequence of an interaction between tellurium and the iodide anion. One-electron reduction of 2a and 2b with cobaltocene produces the neutral dimers (EP (i)Pr 2NP (i)Pr 2Te-) 2 ( 3a, E = S; 3b, E = Se), which are connected exclusively through a Te-Te bond. Two-electron reduction of 2a and 2b with 2 equiv of cobaltocene regenerates the corresponding dichalcogenidoimidodiphosphinate anions as ion-separated cobaltocenium salts Cp 2Co[(EP (i)Pr 2)(TeP (i)Pr 2)N] ( 4a, E = S; 4b, E = Se). The ditellurido analogue Cp 2Co[(TeP (i)Pr 2) 2N] ( 4c) has been prepared in the same manner for comparison. Density functional theory calculations reveal that the preferential interaction of the iodide anion with tellurium is determined by the polarization of the lowest unoccupied molecular orbital [sigma*(E-Te)] of the cations in 2a and 2b toward tellurium and that the formation of the dimers 3a and 3b with a central Te-Te linkage is energetically more favorable than the structural isomers with either E-Te or E-E bonds. Compounds 2a, 2b, 3a, 3b, 4a, 4b, and 4c have been characterized in solution by multinuclear NMR spectroscopy and in the solid state by X-ray crystallography.  相似文献   

7.
Coupling reactions of allenylphosphonates (OCH(2)CMe(2)CH(2)O)P(O)CH=C=CRR' [R, R' = H (1a), R = H, R' = Me (1b), R = R' = Me (1c)] with aryl iodides, iodophenol, and iodobenzoic acid in the presence of palladium(II) acetate are investigated and compared with those of phenylallenes PhCH=C=CR2 [R = H (2a), Me (2b)] and allenyl esters EtO(2)CCH=C=CR(2) [R = H (2c), Me (2d)]. While 1b and 1c couple with different stereochemical outcomes using PhI in the presence of Pd(OAc)(2)/PPh(3)/K(2)CO(3) to give phenyl-substituted 1,3-butadienes, 1a does not undergo coupling but isomerizes to the acetylene (OCH(2)CMe(2)CH(2)O)P(O)CCMe (7). In the reaction of 1c with PhI, use of K(2)CO(3) affords the butadiene (Z)-(OCH(2)CMe(2)CH(2)O)P(O)CH=C(Ph)-C(Me)=CH(2) (12); in contrast, the use of Ag(2)CO(3) leads to the allene (OCH(2)CMe(2)CH(2)O)P(O)C(Ph)=C=CMe(2) (20), showing that these bases differ very significantly in their roles. The reaction of 1a with PhI or PhB(OH)2 in (t)he presence of Pd(OAc)2/CsF/DMF leads mainly to (E)-(OCH(2)CMe(2)CH(2)O)P(O)CH=C(Me)Ph (21) and (OCH(2)CMe(2)CH(2)O)P(O)CH2-C(Ph)=CH(2) (22) and is thus a net 1,2-addition of Ph-H. Compound 1b reacts with iodophenol in the presence of Pd(OAc)(2)/PPh(3)/K(2)CO(3) to give a benzofuran that has a structure different from that obtained by using 1c under similar conditions. Treatment of 1a with iodophenol/Pd(OAc)(2)/CsF/DMF also gives a benzofuran whose structure is different from that obtained by using 2a under similar conditions. In the reaction with 2-iodobenzoic acid, 1a and 2c afford one type of isocoumarin, while 1b,c and 2a,b give a second type of isocoumarin. The structures of key compounds are established by X-ray crystallography. Utility of the phosphonate products in the Horner-Wadsworth-Emmons reaction is demonstrated.  相似文献   

8.
Hydrogen peroxide (H(2)O(2)) acts as a signaling molecule in a wide variety of signaling transduction processes and an oxidative stress marker in aging and disease. However, excessive H(2)O(2) production is implicated with various diseases. Nitric oxide (NO) serves as a secondary messenger inducing vascular smooth muscle relaxation. However, mis-regulation of NO production is associated with various disorders. To disentangle the complicated inter-relationship between H(2)O(2) and NO in the signal transduction and oxidative pathways, fluorescent reporters that are able to display distinct signals to H(2)O(2), NO, and H(2)O(2)/NO are highly valuable. Herein, we present the rational design, synthesis, spectral properties, and living cell imaging studies of FP-H(2)O(2)-NO, the first single-fluorescent molecule, that can respond to H(2)O(2), NO, and H(2)O(2)/NO with three different sets of fluorescence signals. FP-H(2)O(2)-NO senses H(2)O(2), NO, and H(2)O(2)/NO with a fluorescence signal pattern of blue-black-black, black-black-red, and black-red-red, respectively. Significantly, we have further demonstrated that FP-H(2)O(2)-NO, a single fluorescent probe, is capable of simultaneously monitoring endogenously produced NO and H(2)O(2) in living macrophage cells in multicolor imaging. We envision that FP-H(2)O(2)-NO will be a unique molecular tool to investigate the interplaying roles of H(2)O(2) and NO in the complex interaction networks of the signal transduction and oxidative pathways. In addition, this work establishes a robust strategy for monitoring the multiple ROS and RNS species (H(2)O(2), NO, and H(2)O(2)/NO) using a single fluorescent probe, and the modularity of the strategy may allow it to be extended for other types of biomolecules.  相似文献   

9.
BiPd(2)O(4) and PbPd(2)O(4) were synthesized at high pressure of 6 GPa and 1500 K. Crystal structures of BiPd(2)O(4) and PbPd(2)O(4) were studied with synchrotron X-ray powder diffraction. BiPd(2)O(4) is isostructural with PbPt(2)O(4) and crystallizes in a triclinic system (space group P1, a = 5.73632(4) ?, b = 6.02532(5) ?, c = 6.41100(5) ?, α = 114.371(1)°, β = 95.910(1)°, and γ = 111.540(1)° at 293 K). PbPd(2)O(4) is isostructural with LaPd(2)O(4) and BaAu(2)O(4) and crystallizes in a tetragonal system (space group I4(1)/a, a = 5.76232(1) ?, and c = 9.98347(2) ? at 293 K). BiPd(2)O(4) shows ordering of Pd(2+) and Pd(4+) ions, and it is the third example of compounds with ordered arrangements of Pd(2+) and Pd(4+) in addition to Ba(2)Hg(3)Pd(7)O(14) and KPd(2)O(3). In PbPd(2)O(4), the following charge distribution is realized Pb(4+)Pd(2+)(2)O(4). PbPd(2)O(4) shows a structural phase transition from I4(1)/a to I2/a at about 240 K keeping basically the same structural arrangements (space group I2/a, a = 5.77326(1) ?, b = 9.95633(2) ?, c = 5.73264(1) ?, β = 90.2185(2)° at 112 K). BiPd(2)O(4) is nonmagnetic while PbPd(2)O(4) exhibits a significant temperature-dependent paramagnetic moment of 0.46μ(B)/f.u. between 2 and 350 K. PbPd(2)O(4) shows metallic conductivity, and BiPd(2)O(4) is a semiconductor between 2 and 400 K.  相似文献   

10.
Complexes [MoCp(#)(PMe(3))(2)H(3)] (Cp(#)=1,2,4-C(5)H(2)tBu(3), 2 a; C(5)HiPr(4), 2 b) have been synthesized from the corresponding compounds [MoCp(#)Cl(4)] (1 a, 1 b) and fully characterized, including by X-ray crystallography and by a neutron diffraction study for 2 a. Protonation of 2 a led to complex [Mo(1,2,4-C(5)H(2)tBu(3))(PMe(3))(2)H(4)](+) (3 a) in THF and to [Mo(1,2,4-C(5)H(2)tBu(3))(PMe(3))(2)(MeCN)H(2)](+) (4 a) in MeCN. Complex 4 b analogously derives from protonation of 2 b in MeCN, whereas the tetrahydride complex 3 b is unstable. One-electron oxidation of 2 a and 2 b by [FeCp(2)]PF(6) produces the EPR-active 17-electron complexes 2 a(+) and 2 b(+). The former is thermally more stable than the latter and could be crystallographically characterized as the PF(6) (-) salt by X-ray diffraction, providing evidence for the presence of a stretched dihydrogen ligand (H...H=1.36(6) angstroms). Controlled thermal decomposition of 2 a(+) yielded the product of H(2) elimination, the 15-electron monohydride complex [Mo(1,2,4-C(5)H(2)tBu(3))(PMe(3))(2)H]PF(6) (5 a), which was characterized by X-ray crystallography and by EPR spectroscopy at liquid He temperature. The compound establishes an equilibrium with the solvent adduct in THF. An electrochemical study by cyclic voltammetry provides further evidence for a rapid H(2) elimination process from the 17-electron complexes. In contrast to the previously investigated [MoCp*(dppe)H(3)](+) system (dppe=1,2-bis(diphenylphosphino)ethane; Cp*=pentamethylcyclopentadienyl), the decomposition of 2 a(+) by H(2) substitution with a solvent molecule appears to follow a dissociative pathway in MeCN.  相似文献   

11.
Four new nickel(II) complexes, [Ni(2)L(2)(NO(2))(2)]·CH(2)Cl(2)·C(2)H(5)OH, 2H(2)O (1), [Ni(2)L(2)(DMF)(2)(μ-NO(2))]ClO(4)·DMF (2a), [Ni(2)L(2)(DMF)(2)(μ-NO(2))]ClO(4) (2b) and [Ni(3)L'(2)(μ(3)-NO(2))(2)(CH(2)Cl(2))](n)·1.5H(2)O (3) where HL = 2-[(3-amino-propylimino)-methyl]-phenol, H(2)L(') = 2-({3-[(2-hydroxy-benzylidene)-amino]-propylimino}-methyl)-phenol and DMF = N,N-dimethylformamide, have been synthesized starting with the precursor complex [NiL(2)]·2H(2)O, nickel(ii) perchlorate and sodium nitrite and characterized structurally and magnetically. The structural analyses reveal that in all the complexes, Ni(II) ions possess a distorted octahedral geometry. Complex 1 is a dinuclear di-μ(2)-phenoxo bridged species in which nitrite ion acts as chelating co-ligand. Complexes 2a and 2b also consist of dinuclear entities, but in these two compounds a cis-(μ-nitrito-1κO:2κN) bridge is present in addition to the di-μ(2)-phenoxo bridge. The molecular structures of 2a and 2b are equivalent; they differ only in that 2a contains an additional solvated DMF molecule. Complex 3 is formed by ligand rearrangement and is a one-dimensional polymer in which double phenoxo as well as μ-nitrito-1κO:2κN bridged trinuclear units are linked through a very rare μ(3)-nitrito-1κO:2κN:3κO' bridge. Analysis of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the nickel(ii) ions in four complexes, with exchange parameters J of -5.26, -11.45, -10.66 and -5.99 cm(-1) for 1, 2a, 2b and 3, respectively.  相似文献   

12.
Hu J  Liu G  Jiang Q  Zhang R  Huang W  Yan H 《Inorganic chemistry》2010,49(23):11199-11204
Treatment of ortho-carborane, n-butyl lithium, sulfur, and [(p-cymene)RuCl(2)](2) in varying ratio led to four new compounds (p-cymene)Ru[S(3)(C(2)B(10)H(10))(2)] (3), [(p-cymene)Ru(2)(μ(2)-S(2)C(2)B(10)H(9))(μ(3)-S(2)C(2)B(10)H(10))](2) (4), [(p-cymene)Ru](2)Ru(μ(2)-η(2):η(2)-S(2)) (μ(2)-η(2):η(1)-S(2)Cl)(μ(2)-S(2)C(2)B(10)H(10))(2) (5), and [(p-cymene)Ru](2)Ru(μ(2)-η(1):η(1)-S(2))(μ(3)-η(2):η(2)-S(4)) (μ(2)-S(2)C(2)B(10)H(10))(2) (6), respectively. In 3, the ruthenium atom is coordinated by three S atoms from a in situ generated tridentate [S(3)(C(2)B(10)H(10))(2)](2-) ligand. 4 consists of two identical dinuclear (p-cymene)Ru(2)(μ(2)-S(2)C(2)B(10)H(9))(μ(3)-S(2)C(2)B(10)H(10)) subunits which connect to each other via the Ru-Ru bond and two bridging o-carborane-1,2-dithiolate ligands. In 4, a Ru-B bond is present. 5 contains a Ru(3)(μ(2)-S)(2)(μ(2)-S(2))(μ(2)-S(2)Cl) core, and the central ruthenium atom is coordinated by seven S atoms in a distorted pentagonal bipyramidal geometry. In 5, a S-Cl bond is generated. 6 has a novel Ru(3)(μ(2)-S)(2)(μ(2)-S(2))(μ(3)-S(4)) core, and the three ruthenium atoms are connected through the two terminal sulfur atoms of the S-S-S-S chain in a μ(3) binding fashion. All the four complexes have been characterized by elemental analysis, mass, NMR, and X-ray crystallography.  相似文献   

13.
A series of group 6 transition metal half-sandwich complexes with 1,1-dichalcogenide ligands have been prepared by the reactions of Cp*MCl(4)(Cp* = eta(5)-C(5)Me(5); M = Mo, W) with the potassium salt of 2,2-dicyanoethylene-1,1-dithiolate, (KS)(2)C=C(CN)(2) (K(2)-i-mnt), or the analogous seleno compound, (KSe)(2)C=C(CN)(2) (K(2)-i-mns). The reaction of Cp*MCl(4) with (KS)(2)C=C(CN)(2) in a 1:3 molar ratio in CH(3)CN gave rise to K[Cp*M(S(2)C=C(CN)(2))(2)] (M = Mo, 1a, 74%; M = W, 2a, 46%). Under the same conditions, the reaction of Cp*MoCl(4) with 3 equiv of (KSe)(2)C=C(CN)(2) afforded K[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3a) and K[Cp*Mo(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))] (4) in respective yields of 45% and 25%. Cation exchange reactions of 1a, 2a, and 3a with Et(4)NBr resulted in isolation of (Et(4)N)[Cp*Mo(S(2)C=C(CN)(2))(2)] (1b), (Et(4)N)[Cp*W(S(2)C=C(CN)(2))(2)] (2b), and (Et(4)N)[Cp*Mo(Se(2)C=C(CN)(2))(2)] (3b), respectively. Complex 4 crystallized with one THF and one CH(3)CN molecule as a three-dimensional network structure. Inspection of the reaction of Cp*WCl(4) with (KSe)(2)C=C(CN)(2) by ESI-MS revealed the existence of three species in CH(3)CN, [Cp*W(Se(2)C=C(CN)(2))(2)]-, [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-, and [Cp*W(Se(Se(2))C=C(CN)(2))(2)]-, of which [Cp*W(Se(2)C=C(CN)(2))(Se(Se(2))C=C(CN)(2))]-(5) was isolated as the main product. Treatment of 2a with 1/4 equiv of S(8) in refluxing THF resulted in sulfur insertion and gave rise to K[Cp*W(S(2)C=C(CN)(2))(S(S(2))C=C(CN)(2))](6), which crystallized with two THF molecules forming a three-dimensional network structure. 6 can also be prepared by refluxing 2a with 1/4 equiv of S(8) in THF. 3a readily added one Se atom upon treatment with 1 mol of Se powder in THF to give 4 in high yield, while the treatment of 3a or 4 with 2 equiv of Na(2)Se in THF led to formation of a dinuclear complex [(Cp*Mo)(2)(mu-Se)(mu-Se(Se(3))C=C(CN)(2))] (7). The structure of 7 consists of two Cp*Mo units bridged by a Se(2-) and a [Se(Se(3))C=C(CN)(2)](2-) ligand in which the triselenido group is arranged in a nearly linear way (163 degrees). The reaction of 2a with 2 equiv of CuBr in CH(3)CN yielded a trinuclear complex [Cp*WCu(2)(mu-Br)(mu(3)-S(2)C=C(CN)(2))(2)] (8), which crystallized with one CH(3)CN and generated a one-dimensional chain polymer through bonding of Cu to the N of the cyano groups.  相似文献   

14.
The dipalladium(I) complex Pd(2)Cl(2)(dmpm)(2) (1a) [dmpm = bis(dimethylphosphino)methane] is known to react with elemental sulfur (S(8)) to give the bridged-sulfide complex Pd(2)Cl(2)(μ-S)(dmpm)(2) (2a) but, in the presence of excess S(8), PdCl(2)[P,S-dmpm(S)] (4a) and dmpm(S)(2) are generated. Treatment of 1a with elemental selenium (Se(8)), however, gives only Pd(2)Cl(2)(μ-Se)(dmpm)(2) (3a). Complex 4a is best made by reaction of trans-PdCl(2)(PhCN)(2) with dmpm(S). Complex 2a reacts with MeI to yield initially Pd(2)I(2)(μ-S)(dmpm)(2) and MeCl, and then Pd(2)I(2)(μ-I)(2)(dmpm)(2) and Me(2)S, whereas alkylation of 2a with MeOTf generates the cationic, bridged-methanethiolato complex [Pd(2)Cl(2)(μ-SMe)(dmpm)(2)]OTf (5). Oxidation of 2a with m-CPBA forms a mixture of Pd(2)Cl(2)(μ-SO)(dmpm)(2) and Pd(2)Cl(2)(μ-SO(2))(dmpm)(2), whereas Pd(2)Br(2)(μ-S)(dmpm)(2) reacts selectively to give Pd(2)Br(2)(μ-SO)(dmpm)(2) (6b). Treatment of the Pd(2)X(2)(μ-S)(dmpm)(2) complexes with X(2) (X = halogen) removes the bridged-sulfide as S(8), with co-production of Pd(II)(dmpm)-halide species. X-ray structures of 3a, 5 and 6b are presented. Reactions of dmpm with S(8) and Se(8) are clarified. Differences in the chemistry of the dmpm systems with that of the corresponding dppm systems [dppm = bis(diphenylphosphino)methane] are discussed.  相似文献   

15.
We discuss the importance of the topography of the potential energy hypersurface for the ionic conductivity of perovskite-related A(2)B(2)O(5) oxides. A correlation between the energetic preference of the cations for different coordination geometries and the ionic conductivity is proposed based on a first principles periodic density functional theory study of selected possible structures for Ba(2)In(2)O(5), Sr(2)Fe(2)O(5), Sr(2)Mn(2)O(5), and La(2)Ni(2)O(5). There are a large number of low-energy local minima on the potential energy hypersurfaces of the two first compounds due to an energetic preference for BO(4) tetrahedra. Tetrahedral environments are energetically unfavorable for Mn(III) in Sr(2)Mn(2)O(5) and for Ni(II) in La(2)Ni(2)O(5), and the number of low-energy configurations is relatively low in these two cases. Consistent with our findings, in contrast to Sr(2)Fe(2)O(5) and Ba(2)In(2)O(5), Sr(2)Mn(2)O(5) and La(2)Ni(2)O(5) do not exhibit transitions to disordered phases on heating, and there appear to be no reports of enhanced ionic conductivity for these compounds. Thus we suggest that the possibility of many different oxygen orderings associated with a variety of low-energy connectivity schemes within tetrahedral layers such as in the brownmillerite-based structures of Sr(2)Fe(2)O(5) and Ba(2)In(2)O(5) is a prerequisite for high ionic conductivity in perovskite-related A(2)B(2)O(5) oxides.  相似文献   

16.
rac-Bis[{(diphenylphosphino)ethyl}-phenylphosphino]methane (DPPEPM) reacts with iron(II) and ruthenium(II) halides to generate complexes with folded DPPEPM coordination. The paramagnetic, five-coordinate Fe(DPPEPM)Cl(2) (1) in CD(2)Cl(2) features a tridentate binding mode as established by (31)P{(1)H} NMR spectroscopy. Crystal structure analysis of the analogous bromo complex, Fe(DPPEPM)Br(2) (2) revealed a pseudo-octahedral, cis-α geometry at iron with DPPEPM coordinated in a tetradentate fashion. However, in CD(2)Cl(2) solution, the coordination of DPPEPM in 2 is similar to that of 1 in that one of the external phosphorus atoms is dissociated resulting in a mixture of three tridentate complexes. The chloro ruthenium complex cis-Ru(κ(4)-DPPEPM)Cl(2) (3) is obtained from rac-DPPEPM and either [RuCl(2)(COD)](2) [COD = 1,5-cyclooctadiene] or RuCl(2)(PPh(3))(4). The structure of 3 in both the solid state and in CD(2)Cl(2) solution features a folded κ(4)-DPPEPM. This binding mode was also observed in cis-[Fe(κ(4)-DPPEPM)(CH(3)CN)(2)](CF(3)SO(3))(2) (4). Addition of an excess of CO to a methanolic solution of 1 results in the replacement of one of the chloride ions by CO to yield cis-[Fe(κ(4)-DPPEPM)Cl(CO)](Cl) (5). The same reaction in CH(2)Cl(2) produces a mixture of 5 and [Fe(κ(3)-DPPEPM)Cl(2)(CO)] (6) in which one of the internal phosphines has been substituted by CO. Complexes 2, 3, 4, and 5 appear to be the first structurally characterized monometallic complexes of κ(4)-DPPEPM.  相似文献   

17.
[C(4)H(3)N(CH(2)NMe(2))-2]AlMe(2) (1) is prepared in 88% yield by the reaction of substituted pyrrole [C(4)H(4)N(CH(2)NMe(2))-2] with 1 equiv of AlMe(3) in methylene chloride. Reaction of compound 1 with 1 equiv of phenyl isocyanate in toluene generates a seven-membered cycloaluminum compound [C(4)H(3)N[CH(2)NPh(CONMe(2))]-2] AlMe(2) (2). The phenyl isocyanate was inserted into the aluminum and dimethylamino nitrogen bond and induced an unusual rearrangement which results in C-N bond breaking and formation. A control experiment shows that the reaction of substituted pyrrole [C(4)H(4)N(CH(2)NMe(2))-2] with 1 equiv of phenyl isocyanate in diethyl ether yields a pyrrolyl attached urea derivative [C(4)H(3)N(CH(2)NMe(2))-2-[C(=O)NHPh]-1] (3). The demethanation reaction of AlMe(3) with 1 equiv of 3 in methylene chloride at 0 degrees C afforded O-bounded and N-bounded aluminum dimethyl compounds [C(4)H(3)N(CH(2)NMe(2))-2-[C(=O)NPh]-1]AlMe(2) (4a) and [C(4)H(3)N(CH(2)NMe(2))-2-[CO(=NPh)]-1]AlMe(2) (4b) in a total 78% yield after recrystallization. Both 4a and 4b are observed in (1)H NMR spectra; however, the relative ratio of 4a and 4b depends on the solvent used. Two equivalents of AlMe(3) was reacted with 3 in methylene chloride to yield a dinuclear aluminum compound AlMe(3)[C(4)H(3)N(CH(2)NMe(2))-2-[C(=O)NPh]-1] AlMe(2) (5). Reaction of 5 with another equivalent of ligand 3 results in the re-formation of compounds 4a and 4b.  相似文献   

18.
The redox chemistry of tellurium-chalcogenide systems is examined via reactions of tellurium(IV) tetrachloride with Li[(t)()BuN(E)P(mu-N(t)Bu)(2)P(E)N(H)(t)Bu] (3a, E = S; 3b, E = Se). Reaction of TeCl(4) with 2 equiv of 3a in THF generates the tellurium(IV) species TeCl(3)[HcddS(2)][H(2)cddS(2)] 4a [cddS(2) = (t)BuN(S)P(mu-N(t)Bu)(2)P(S)N(t)Bu] at short reaction times, while reduction to the tellurium(II) complex TeCl(2)[H(2)cddS(2)](2) 5a is observed at longer reaction times. The analogous reaction of TeCl(4) and 3b yields only the tellurium(II) complex TeCl(2)[H(2)cddSe(2)](2) 5b. The use of 4 equiv of 3a or 3b produces Te[HcddE(2)](2) (6a (E = S) or 6b (E = Se)). NMR and EPR studies of the 5:1 reaction of 3a and TeCl(4) in THF or C(6)D(6) indicate that the formation of the Te(II) complex 6a via decomposition of a Te(IV) precursor occurs via a radical process to generate H(2)cddS(2). Abstraction of hydrogen from THF solvent is proposed to account for the formation of 2a. These results are discussed in the context of known tellurium-sulfur and tellurium-nitrogen redox systems. The X-ray crystal structures of 4a.[C(7)H(8)](0.5), 5a, 5b, 6a.[C(6)H(14)](0.5), and 6b.[C(6)H(14)](0.5) have been determined. The cyclodiphosph(V)azane dichalcogenide ligand chelates the tellurium center in an E,N (E = S, Se) manner in 4a.[C(7)H(8)](0.5), 6a.[C(6)H(14)](0.5), and 6b.[C(6)H(14)](0.5) with long Te-N bond distances in each case. Further, a neutral H(2)cddS(2) ligand weakly coordinates the tellurium center in 4a small middle dot[C(7)H(8)](0.5) via a single chalcogen atom. A similar monodentate interaction of two neutral ligands with a TeCl(2) unit is observed in the case of 5a and 5b, giving a trans square planar arrangement at tellurium.  相似文献   

19.
The aryl-substituted N-picolylethylenediamine and diethylenetriamine ligands, (ArNHCH(2)CH(2))[(2-C(5)H(4)N)CH(2)]NH and (ArNHCH(2)CH(2))(2)NH (Ar = 2,6-Me(2)C(6)H(3), 2,4,6-Me(3)C(6)H(2)), have been prepared by employing palladium-catalysed N-C(aryl) coupling reactions of the corresponding primary amines with aryl bromide. Treatment of MCl(2) with (ArNHCH(2)CH(2))[(2-C(5)H(4)N)CH(2)]NH affords [[(ArNHCH(2)CH(2))((2-C(5)H(4)N)CH(2))NH]CoCl(2)](Ar = 2,6-Me(2)C(6)H(3) 1a; 2,4,6-Me(3)C(6)H(2)) 1b and [[(ArNHCH(2)CH(2))((2-C(5)H(4)N)CH(2))NH]FeCl(2)](n)(n= 1, Ar = 2,6-Me(2)C(6)H(3) 2a; n= 2, 2,4,6-Me(3)C(6)H(2) 2b) in high yield. The X-ray structures of 1a and 1b are isostructural and reveal the metal centres to adopt distorted trigonal bipyramidal geometries with the N,N,N-chelates adopting fac-structures. A facial coordination mode of the ligand is also observed in bimetallic 2b, however, in 2a the N,N,N-chelate adopts a mer-configuration with the metal centre adopting a geometry best described as square pyramidal. Solution studies indicate that mer-fac isomerisation is a facile process for these systems at room temperature. Quantum mechanical calculations (DFT) have been performed on 1a and 2a, in which the ligands employed are identical, and show the fac- to be marginally more stable than the mer-configuration for cobalt (1a) while for iron (2a) the converse is evident. Reaction of (ArNHCH(2)CH(2))(2)NH with CoCl(2) gave the five-coordinate complexes [[(ArNHCH(2)CH(2))(2)NH]CoCl(2)](Ar = 2,6-Me(2)C(6)H(3) 3a, 2,4,6-Me(3)C(6)H(2) 3b), in which the ligand adopts a mer-configuration; no reaction occurred with FeCl(2). All complexes 1-3 act as modest ethylene oligomerisation catalysts on activation with excess methylaluminoxane (MAO); the iron systems giving linear alpha-olefins while the cobalt systems give mixtures of linear and branched products.  相似文献   

20.
A series of mononuclear gold(I) acetylide complexes with urea moiety, R'(3)PAuC≡CC(6)H(4)-4-NHC(O)NHC(6)H(4)-4-R (R' = cyclohexyl, R = NO(2) (2a), CF(3) (2b), Cl (2c), H (2d), CH(3) (2e), (t)Bu (2f), OCH(3) (2g); R' = phenyl, R = NO(2) (3a), OCH(3) (3b); R' = 4-methoxyphenyl, R = H (4a), OCH(3) (4b)), have been synthesized and characterized. The crystal structures of Ph(3)PAuC≡CC(6)H(4)-4-NHC(O)NHC(6)H(4)-4-NO(2) (3a) and (4-CH(3)OC(6)H(4))(3)PAuC≡CC(6)H(4)-4-NHC(O)NHC(6)H(5) (4a) have been determined by X-ray diffraction. Complexes 2a-2g, 3b, and 4a-4b show intense luminescence both in the solid state and in degassed THF solution at 298 K. Anion binding properties of complexes 2a-2g, 3a-3b, and 4a-4b have been studied by UV-vis and (1)H NMR titration experiments. In general, the log K values of 2a-2g with the same anion in THF depend on the substituent R on the acetylide ligand of 2a-2g: R = NO(2) (2a) > CF(3) (2b) ≥ Cl (2c) > H (2d) > CH(3) (2e) ≈ (t)Bu (2f) ≥ OCH(3) (2g). Complex 2a with NO(2) group shows the dramatic color change toward F(-) in DMSO, which provides an access of naked eye detection of F(-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号