首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a quest to develop an effective, scalable synthesis of (+)-spongistatin 1 ( 1), we devised a concise, third-generation scalable synthesis of (+)- 7, the requisite F-ring tetrahydropyran aldehyde, employing a proline-catalyzed cross-aldol reaction. Subsequent elaboration to (+)-EF Wittig salt (+)- 3, followed by union with advanced ABCD aldehyde (-)- 4, macrolactonization and global deprotection permitted access to >1.0 g of totally synthetic (+)-spongistatin 1 ( 1).  相似文献   

2.
The design, synthesis, and biological evaluation of two diminutive forms of (+)-spongistatin 1, in conjunction with the development of a potentially general design strategy to simplify highly flexible macrocyclic molecules while maintaining biological activity, have been achieved. Examination of the solution conformations of (+)-spongistatin 1 revealed a common conformational preference along the western perimeter comprising the ABEF rings. Exploiting the hypothesis that the small-molecule recognition/binding domains are likely to comprise the conformationally less mobile portions of a ligand led to the design of analogues, incorporating tethers (blue) in place of the CD and the ABCD components of the (+)-spongistatin 1 macrolide, such that the conformation of the retained (+)-spongistatin 1 skeleton would mimic the assigned solution conformations of the natural product. The observed nanomolar cytotoxicity and microtubule destabilizing activity of the ABEF analogue provide support for both the assigned solution conformation of (+)-spongistatin 1 and the validity of the design strategy.  相似文献   

3.
Three syntheses of the architecturally complex, cytotoxic marine macrolide (+)-spongistatin 1 (1) are reported. Highlights of the first-generation synthesis include: use of a dithiane multicomponent linchpin coupling tactic for construction of the AB and CD spiroketals, and their union via a highly selective Evans boron-mediated aldol reaction en route to an ABCD aldehyde; introduction of the C(44)-C(51) side chain via a Lewis acid-mediated ring opening of a glucal epoxide with an allylstannane to assemble the EF subunit; and final fragment union via Wittig coupling of the ABCD and EF subunits to form the C(28)-C(29) olefin, followed by regioselective Yamaguchi macrolactonization and global deprotection. The second- and third-generation syntheses, designed with the goal of accessing 1 g of (+)-spongistatin 1 (1), maintain both the first-generation strategy for the ABCD aldehyde and final fragment union, while incorporating two more efficient approaches for construction of the EF Wittig salt. The latter combine the original chelation-controlled dithiane union of the E- and F-ring progenitors with application of a highly efficient cyanohydrin alkylation to append the F-ring side chain, in conjunction with two independent tactics to access the F-ring pyran. The first F-ring synthesis showcases a Petasis-Ferrier union/rearrangement protocol to access tetrahydropyrans, permitting the preparation of 750 mg of the EF Wittig salt, which in turn was converted to 80 mg of (+)-spongistatin 1, while the second F-ring strategy, incorporates an organocatalytic aldol reaction as the key construct, permitting completion of 1.009 g of totally synthetic (+)-spongistatin 1 (1). A brief analysis of the three syntheses alongside our earlier synthesis of (+)-spongistatin 2 is also presented.  相似文献   

4.
[structure: see text] An efficient, stereocontrolled, and scalable second-generation synthesis of (+)-3, an advanced EF subtarget for the total synthesis of (+)-spongistatin 1, has been achieved. Highlights of the strategy include preparation of the F-ring pyran via a Petasis-Ferrier union/rearrangement sequence and installation of the chlorodiene side chain employing a cyanohydrin alkylation. The longest linear sequence, 26 steps, proceeds in 8.3% overall yield.  相似文献   

5.
Evolution of a convergent synthetic strategy to access (+)-spongistatin 2 (2), a potent cytotoxic marine macrolide, is described. Highlights of the synthesis include: development of a multicomponent dithiane-mediated linchpin union tactic, devised and implemented specifically for construction of the spongistatin AB and CD spiro ring systems; application of a CaII ion controlled acid promoted equilibration to set the thermodynamically less stable axial-equatorial stereogenicity in the CD spiroketal; use of sulfone addition/Julia methylenation sequences to unite the AB and CD fragments and introduce the C(44)-C(51) side chain; and fragment union and final elaboration to (+)-spongistatin 2 (2) exploiting Wittig olefination to unite the advanced ABCD and EF fragments, followed by regioselective Yamaguchi macrolactonization and global deprotection. Correction of the CD spiro ring stereogenicity was subsequently achieved via acid equilibration in the presence of CaII ion to furnish (+)-spongistatin 2 (2). The synthesis proceeded with a longest linear sequence of 41 steps.  相似文献   

6.
The absolute structures of some naturally occurring chiral 2-isopropenyl-2,3-dihydrobenzofurans, (+)-remirol (1a), (+)-remiridiol (1b), (+)-angenomalin (2), and (+)-isoangenomalin (3), were studied by respective chiral synthesis. Kinetic resolutions of racemic 2-isopropenyl-2,3-dihydrobenzofurans, 2-isopropenyl-4,6-dimethoxy-2,3-dihydrobenzofuran (4), 4-hydroxy-2-isopropenyl-2,3-dihydrobenzofuran-5-carbaldehyde (8), and 2-isopropenyl-6-(MOM)oxy-2,3-dihydrobenzofuran-5-carbaldehyde (11c), by Sharpless dihydroxylation using (DHQ)(2)AQN or (DHQD)(2)AQN gave the corresponding chiral 2-isopropenyl-2,3-dihydrobenzofurans. Chiral (S)-(+)-4 (99% ee, using (DHQD)(2)AQN) was converted to natural remirol (S)-(+)-1a and then to natural remiridiol (S)-(+)-1b. (S)-(+)-8 (97% ee, using (DHQD)(2)AQN) was converted to natural angenomalin (S)-(+)-2. (R)-(-)-11c (>99% ee, using (DHQ)(2)AQN), was converted to natural isoangenomalin (R)-(+)-3. Thus, the absolute structures of natural remirol (+)-1a and remiridiol (+)-1b and angenomalin (+)-2 were determined to be S, and the structure of natural isoangenomalin (+)-3 was R.  相似文献   

7.
Oxidation of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD, 1 a) and N,N'-diphenyl-N,N'-bis(2,4-dimethylphenyl)-(1,1'-biphenyl)-4,4'-diamine (1 b) with SbCl(5) affords the corresponding radical cations quantitatively. The crystal and molecular structure of 1 b and [1 b]SbCl(6), the first tetraphenyl benzidene derivatives to be characterised crystallographically in both the neutral and radical cation states, reveal molecular parameters in agreement with the predictions made on the basis of DFT studies. Analysis of the NIR transition in the radical cations [1](+) (.) allows an estimate of the electronic coupling parameter V (1 a(+) (.) 3200 cm(-1); 1 b(+) (.) 3300 cm(-1)), the reorganisation energy lambda(1 a(+) (.) 7500 cm(-1); 1 b(+) (.) 7800 cm(-1)), and the linear coupling constant l (1 a(+) (.) 3100 cm(-1); 1 b(+) (.) 2700 cm(-1)) of the symmetric mode.  相似文献   

8.
Total syntheses of (+)-coronarin A (1), (+)-coronarin E (2), (+)-austrochaparol (3) and (+)-pacovatinin A (4) were achieved from the synthetic (+)-albicanyl acetate (6). Dess-Martin oxidation of (+)-albicanol (5) derived from the chemoenzymatic product (6) gave an aldehyde (7), which was subjected to Julia one-pot olefination using beta-furylmethyl-heteroaromatic sulfones (8 or 9 ) gave (+)-trans coronarin E (2) and (+)-cis coronarin E (12) with high cis-selectivity. The synthesis of (+)-coronarin A (1) from (+)-trans coronarin E (2) was achiev-ed, while (+)-cis coronarin E (12) was converted to the natural products (+)-(5S,9S,10S)-15,16-epoxy-8(17),13(16),14-labdatriene (13) and (+)-austrochaparol (3). By the asymmetric synthesis of (+)-3, the absolute structure of (+)-3 was determined to be 5S, 7R, 9R, 10S configurations. Homologation of (+)-albicanol (5) followed by allylic oxidation gave (7 alpha)-hydroxy nitrile (17), which was finally converted to the natural (+)-pacovatinin A (4) in 8 steps from (+)-albicanol (5).  相似文献   

9.
Reactions between Mg(+) and O(3), O(2), N(2), CO(2) and N(2)O were studied using the pulsed laser photo-dissociation at 193 nm of Mg(C(5)H(7)O(2))(2) vapour, followed by time-resolved laser-induced fluorescence of Mg(+) at 279.6 nm (Mg(+)(3(2)P(3/2)-3(2)S(1/2))). The rate coefficient for the reaction Mg(+) + O(3) is at the Langevin capture rate coefficient and independent of temperature, k(190-340 K) = (1.17 ± 0.19) × 10(-9) cm(3) molecule(-1) s(-1) (1σ error). The reaction MgO(+) + O(3) is also fast, k(295 K) = (8.5 ± 1.5) × 10(-10) cm(3) molecule(-1) s(-1), and produces Mg(+) + 2O(2) with a branching ratio of (0.35 ± 0.21), the major channel forming MgO(2)(+) + O(2). Rate data for Mg(+) recombination reactions yielded the following low-pressure limiting rate coefficients: k(Mg(+) + N(2)) = 2.7 × 10(-31) (T/300 K)(-1.88); k(Mg(+) + O(2)) = 4.1 × 10(-31) (T/300 K)(-1.65); k(Mg(+) + CO(2)) = 7.3 × 10(-30) (T/300 K)(-1.59); k(Mg(+) + N(2)O) = 1.9 × 10(-30) (T/300 K)(-2.51) cm(6) molecule(-2) s(-1), with 1σ errors of ±15%. Reactions involving molecular Mg-containing ions were then studied at 295 K by the pulsed laser ablation of a magnesite target in a fast flow tube, with mass spectrometric detection. Rate coefficients for the following ligand-switching reactions were measured: k(Mg(+)·CO(2) + H(2)O → Mg(+)·H(2)O + CO(2)) = (5.1 ± 0.9) × 10(-11); k(MgO(2)(+) + H(2)O → Mg(+)·H(2)O + O(2)) = (1.9 ± 0.6) × 10(-11); k(Mg(+)·N(2) + O(2)→ Mg(+)·O(2) + N(2)) = (3.5 ± 1.5) × 10(-12) cm(3) molecule(-1) s(-1). Low-pressure limiting rate coefficients were obtained for the following recombination reactions in He: k(MgO(2)(+) + O(2)) = 9.0 × 10(-30) (T/300 K)(-3.80); k(Mg(+)·CO(2) + CO(2)) = 2.3 × 10(-29) (T/300 K)(-5.08); k(Mg(+)·H(2)O + H(2)O) = 3.0 × 10(-28) (T/300 K)(-3.96); k(MgO(2)(+) + N(2)) = 4.7 × 10(-30) (T/300 K)(-3.75); k(MgO(2)(+) + CO(2)) = 6.6 × 10(-29) (T/300 K)(-4.18); k(Mg(+)·H(2)O + O(2)) = 1.2 × 10(-27) (T/300 K)(-4.13) cm(6) molecule(-2) s(-1). The implications of these results for magnesium ion chemistry in the atmosphere are discussed.  相似文献   

10.
Optically active 1,1-binaphthalene-2, 2-diol has become a quite important chiral source in different fields of chirotechnology, especially in asymmetric synthesis1. Its synthesis and resolution has been extensively studied and various resolution methods have been reported2. Among the reported resolution methods, the following three, namely, via the formation of phosphoric acid derivatives3, boric acid derivatives4 and inclusion complexes5, are the most important. OHOH+_( )-1(-)-(S)-1(+)-(R)…  相似文献   

11.
Alkylation of the alpha-carbanion of (R)-(-)-tert-butyl methyl sulfoxide (4) with n-propyl bromide afforded (+)-n-butyl tert-butyl sulfoxide (1) to which the absolute configuration (R) was ascribed. This assignment was confirmed by X-ray analysis of the complex 6 obtained from the enantiomerically pure sulfoxide (-)-1 and mercury chloride. Vibrational absorption and circular dichroism spectra of (+)-1 were measured in CDCl3 solution in the 2000-900 cm(-1) region and compared with the ab initio predictions of absorption and VCD spectra obtained with density functional theory using the B3LYP/6-31G basis set for different conformers of (R)-1. This comparison indicated also that (+)-1 is of the (R)-configuration.  相似文献   

12.
The enzymatic resolution products [(1R,4aR,8aR)-1,2,3,4,4a,5,6,7,8,8a-decahydro-5,5,8a-trimethyl-2-oxo-trans-naphthalene-1-methanol-2-ethylene acetal (8aR)-7 (98% ee) and {acetate of (1S,4aS,8aS)-1,2,3,4,4a,5,6,7,8,8a-decahydro-5,5,8a-trimethyl-2-oxo-trans-naphthalene-1-methanol-2-ethylene acetal} (8aS)-9 (>99% ee)] obtained by the lipase-catalyzed enantioselective acetylation of (±)-7 in the presence of vinyl acetate as an acyl donor were converted to the ,β-unsaturated ketones (8aR)-6 and (8aS)-6, respectively. Concise syntheses of (+)-totarol 1, (+)-podototarin 2 and (+)-sempervirol 3 were achieved based on Michael reactions between (8aS)-6 and the appropriate β-keto ester followed by aldol condensation. The first chiral syntheses of (+)-jolkinolides E 4 and D 5 were achieved from (5R,10R,12R)-12-hydroxypodocarpa-8(14)-en-13-one 15 derived from (8aR)-6.  相似文献   

13.
The first enantioselective total synthesis of (-)-triptolide (1), (-)-triptonide (2), (+)-triptophenolide (3), and (+)-triptoquinonide (4) was completed. The key step involves lanthanide triflate-catalyzed oxidative radical cyclization of (+)-8-phenylmenthyl ester 30 mediated by Mn(OAc)3, providing intermediate 31 with good chemical yield (77%) and excellent diastereoselectivity (dr 38:1). (+)-Triptophenolide methyl ether (5) was then prepared in > 99% enantiomeric excess (> 99% ee), and readily converted to natural products 1-4. In addition, transition state models were proposed to explain the opposite chiral induction observed in the oxidative radical cyclization reactions of chiral beta-keto esters 17 (without an alpha-substituent) and 17a (with an alpha-chloro substituent).  相似文献   

14.
The absolute configurations (ACs) of the iridoid natural products, plumericin (1) and isoplumericin (2), have been re-investigated using vibrational circular dichroism (VCD) spectroscopy, electronic circular dichroism (ECD) spectroscopy, and optical rotatory dispersion (ORD). Comparison of DFT calculations of the VCD spectra of 1 and 2 to the experimental VCD spectra of the natural products, (+)-1 and (+)-2, leads unambiguously to the AC (1R,5S,8S,9S,10S)-(+) for both 1 and 2. In contrast, comparison of time-dependent DFT (TDDFT) calculations of the ECD spectra of 1 and 2 to the experimental spectra of (+)-1 and (+)-2 does not permit definitive assignment of their ACs. On the other hand, TDDFT calculations of the ORD of (1R,5S,8S,9S,10S)-1 and -2 over the range of 365-589 nm are in excellent agreement with the experimental data of (+)-1 and (+)-2, confirming the ACs derived from the VCD spectra. Thus, the ACs initially proposed by Albers-Sch?nberg and Schmid are shown to be correct, and the opposite ACs recently derived from the ECD spectra of 1 and 2 by Els?sser et al. are shown to be incorrect. As a result, the ACs of other iridoid natural products obtained by chemical correlation with 1 and 2 are not in need of revision.  相似文献   

15.
(+/-)-7,7'-Dihydroxy-8,8'-biquinolyl (6) was resolved into its enantiomorphic atropisomers via reverse phase (C18) chromatographic separation of epimeric bismenthyl carbonates, (-)-lk-9 and (+)-ul-9, derived from 6 and (+)-menthyl chloroformate. The faster eluting diastereoisomer, (-)-lk-9, was revealed to possess an (aS)-configurated biaryl axis by X-ray crystallographic analysis. Saponification of the separated bismenthyl carbonates gave enantioenriched samples of biquinolyl 6, and absolute stereochemical configurations were assigned to the two optical isomers as (-)-(aS)-6 and (+)-(aR)-6 by correlation with their respective progenitors, (-)-lk-9 and (+)-ul-9. First-order rate constants for the enantiomerization of 6 in water were obtained over the temperature range 316-366 K, and activation parameters were determined as DeltaH(++) = 34.0 kcal mol(-1) and DeltaS(++) = 18.7 cal mol(-1) K(-1) by Eyring plot analysis. A low level (AM1) computational study of the rotational dynamics of 6 showed excellent agreement with kinetic experimental data and suggested that enantiomerization occurs preferentially via a syn pathway. In common with (-)-(aS)-1,1'-bi-2-naphthol (BINOL), (-)-(aS)-6 showed positive exciton chirality in its electronic circular dichroism (CD) spectrum and gave a characteristic couplet composed of a positive maximum Cotton effect at 250 nm and a negative minimum at 234 nm (Delta Delta epsilon = +40 M(-1) cm(-1) at 64% ee).  相似文献   

16.
A unified strategy for total synthesis of the Lycopodium alkaloids (-)-8-deoxyserratinine (7), (+)-fawcettimine (1), and (+)-lycoflexine (4) is detailed. The key features include a highly efficient Helquist annulation to assemble the cis-fused 6/5 bicycle, facile construction of the aza nine-membered ring system employing double N-alkylation strategy, providing access to the common tricyclic skeleton, asymmetric Shi epoxidation, delivering the desired β-epoxide stereospecifically to furnish (-)-8-deoxyserratinine (7), SmI(2) reduction of dihydroxylation derivative 35 to enable formation of (+)-fawcettimine (1), and a rapid biomimetic transformation of (+)-fawcettimine (1) into (+)-lycoflexine (4) via an intramolecular Mannich cyclization.  相似文献   

17.
The first total synthesis of (+)-Na-methyl-16-epipericyclivine (9) was completed [from d-(+)-tryptophan methyl ester] in an overall yield of 42% (eight reaction vessels). The optical rotation [[alpha]D +22.8 (c 0.50, CHCl3)] obtained on this material confirmed that the reported optical rotation [[alpha]D 0 (c 0.50, CHCl3)]47 was biogenetically unreasonable. The total syntheses of (+)-vellosimine, (+)-normacusine B, (-)-alkaloid Q3, (-)-panarine, and (+)-Na-methylvellosimine are also described. Moreover, a mixed sample (1:1) of synthetic (-)-panarine and natural (-)-panarine yielded only one set of signals in the 13C NMR; this indicated that the two compounds are identical and further confirmed the correct configuration of (+)-vellosimine, (+)-normacusine B, and (-)-alkaloid Q3. In this approach, the key templates, (-)-Na-H,Nb-benzyltetracyclic ketone 15a and (-)-Na-methyl,Nb-benzyltetracyclic ketone 43 were synthesized on multihundred gram scale by the asymmetric Pictet-Spengler reaction and a stereocontrolled Dieckmann cyclization via improved sequences. An intramolecular palladium (enolate-mediated) coupling reaction was employed to introduce the C(19)-C(20) E-ethylidene function in the sarpagine alkaloids for the first time in stereospecific fashion.  相似文献   

18.
A new neolignan, 3,4-dimethoxy-3',4'-methylenedioxy-2,9-epoxy-6,7-cyclo-1,8-neolign-11-en-5(5H)-one, which has been named (+)-kunstlerone (1), together with six known alkaloids: (+)-norboldine (2), (+)-N-methylisococlaurine (3), (+)-cassythicine (4), (+)-laurotetanine (5), (+)-boldine (6) and (-)-pallidine (7), were isolated from the leaves of Beilschmiedia kunstleri. The structures were established through various spectroscopic methods notably 1D- and 2D-NMR, UV, IR and LCMS-IT-TOF. (+)- Kunstlerone (1) showed a strong antioxidant activity, with an SC(50) of 20.0 μg/mL.  相似文献   

19.
Gainza AH 《Talanta》1997,44(3):427-441
Ternary mixtures of Bromocresol Green (BCGH), Benzethonium Chloride (BZ(+)Cl(-)), and Quinine (Q) in dichloromethane (CH(2)Cl(2) for ratios 1:>/=1:>/=1 (BCGH(2):BZ(+)Cl(-):Q) generate species BCGH(-)BZ(+), BZ(+)BCG(-)-H-Q) and BCG(2-) (BZ(+))(2) in chemical equilibrium; whose thermodynamic parameters are determined. A new method to study ternary mixtures in a non-polar solvent has been given and other amines (A) and quaternary ammonium compounds (QAC) instead of Q and BZ(+)Cl(-) have also been researched. Species BCGH(-)BZ(+), and BCG(2-)(BZ(+))(2) are ion associates of 1:1 and 1:2 (dye:BZ(+)Cl(-)) stoichiometry and species BZ(+)BCG(-)-H-Q presents a hydrogen bond, being of 1:1:1 (dye:BZ(+)Cl(-):Q) stoichiometry. The Vis-VU, IR and (1)H-NMR spectra of the associates suggest that they are in nature resonance hybrids. A new and fundamental equation which governs extraction of any 1:1:1 associate is deduced and checked experimentally, showing that its extraction depends on the high capacity of the amine to accept hydrogen bonds and the high extractability of the ammonium ion. Extraction of the 1:1:1 associate using different amines and ammonium ions is studied both, experimentally and by the new equation, checking that the 1:1:1 associate containing Q and BZ(+) is selectively extracted due to the fact that Q has a high hydrophobicity and high capacity to form hydrogen bonds and species BZ(+)Cl(-) has a high ion-associability. Selective extraction of this 1:1:1 associate is useful for quantitative determination in complex mixtures of ammonium ions of high ion associability as BZ(+)Cl(-).  相似文献   

20.
A series of reactions involving Fe(+) ions were studied by the pulsed laser ablation of an iron target, with detection of ions by quadrupole mass spectrometry at the downstream end of a fast flow tube. The reactions of Fe(+) with N(2)O, N(2) and O(2) were studied in order to benchmark this new technique. Extending measurements of the rate coefficient for Fe(+) + N(2)O from 773 K to 185 K shows that the reaction exhibits marked non-Arrhenius behaviour, which appears to be explained by excitation of the N(2)O bending vibrational modes. The recombination of Fe(+) with CO(2) and H(2)O in He was then studied over a range of pressure and temperature. The data were fitted by RRKM theory combined with ab initio quantum calculations on Fe(+).CO(2) and Fe(+).H(2)O, yielding the following results (120-400 K and 0-10(3) Torr). For Fe(+) + CO(2): k(rec,0) = 1.0 x 10(-29) (T/300 K)(-2.31) cm(6) molecule(-2) s(-1); k(rec,infinity) = 8.1 x 10(-10) cm(3) molecule(-1) s(-1). For Fe(+) + H(2)O: k(rec,0) = 5.3 x 10(-29) (T/300 K)(-2.02) cm(6) molecule(-2) s(-1); k(rec,infinity) = 2.1 x 10(-9) (T/300 K)(-0.41) cm(3) molecule(-1) s(-1). The uncertainty in these rate coefficients is determined using a Monte Carlo procedure. A series of exothermic ligand-switching reactions were also studied at 294 K: k(Fe(+).N(2) + O(2)) = (3.17 +/- 0.41) x 10(-10), k(Fe(+).CO(2) + O(2)) = (2.16 +/- 0.35) x 10(-10), k(Fe(+).N(2) + H(2)O) = (1.25 +/- 0.14) x 10(-9) and k(Fe(+).O(2) + H(2)O) = (8.79 +/- 1.30) x 10(-10) cm(3) molecule(-1) s(-1), which are all between 36 and 52% of their theoretical upper limits calculated from long-range capture theory. Finally, the role of these reactions in the chemistry of meteor-ablated iron in the upper atmosphere is discussed. The removal rates of Fe(+) by N(2), O(2), CO(2) and H(2)O at 90 km altitude are approximately 0.1, 0.07, 3 x 10(-4) and 1 x 10(-6) s(-1), respectively. The initially formed Fe(+).N(2) and Fe(+).O(2) are converted into the H(2)O complex at approximately 0.05 s(-1). Fe(+).H(2)O should therefore be the most abundant single-ligand Fe(+) complex in the mesosphere below 90 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号