首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A series of novel carbazole compounds was synthesized and tested for their suitability as host for triplet emitters in an organic-light emitting diode (OLED). In these compounds, a carbazole unit is either connected to other carbazole units to form carbazole dimers and trimers or to fluorene and oxadiazole derivatives to form mixed compounds. The HOMO level of carbazole compounds can be tuned by substitution at the 3, 6, and/or 9 positions. Making oligomers by connecting carbazole molecules via their 3 (3') positions shifts the HOMO level to higher energy, while replacing alkyl groups at the 9 (9') positions by aryl groups shifts the HOMO level to lower energy. Furthermore, it has been found that the triplet energy of these compounds is determined by the presence of poly(p-phenyl) chains in the molecular structure. By identifying the longest poly(p-phenyl) chain, one can predict whether a compound will be a suitable host for a high-energy triplet emitter. An overview of HOMO levels, singlet and triplet levels, and exchange energies is given for all carbazole compounds synthesized. Finally, OLEDs employing two selected carbazole compounds as host and fac-tris(2-phenylpyridine)-iridium (Ir(ppy)(3)) as guest were constructed and characterized electrically.  相似文献   

3.
[reaction: see text] A series of carbazole/fluorene (CBZm-Fn) hybrids were effectively synthesized through Friedel-Crafts-type substitution of the carbazole rings. These compounds were thermally and morphologically stable host materials for OLED applications. Efficient blue phosphorescent OLEDs were obtained when employing CBZ1-F2 as the host and FIrpic as the guest.  相似文献   

4.
Wei Li  Lian Duan 《Tetrahedron》2007,63(41):10161-10168
The problem of self-quenching in organic electrophosphorescence devices has been extensively studied and partially solved by using sterically hindered spacers in phosphorescent dopants. This paper attempts to address this problem by using sterically hindered host materials. Novel fluorene/carbazole hybrids with tert-butyl substitutions, namely 9,9-bis[4-(3,6-di-tert-butylcarbazol-9-yl)phenyl]fluorene (TBCPF) and 9,9-bis[4-(carbazol-9-yl)phenyl]-2,7-di-tert-butylfluorene (CPTBF), have been synthesized and characterized. The compounds exhibit not only high triplet energy (>2.8 eV), but also high glass transition temperature (>160 °C) and thermal stability. The substitution of inert tert-butyl groups to the carbazole/fluorene rings of these host molecules has a remarkable effect on the corresponding properties of the host materials, i.e. enhancing the thermal and electrochemical stability, weakening the intermolecular packing, and tuning the solid-state emission. Blue electrophosphorescent devices with enhanced performance were prepared by utilizing the sterically hindered host materials. The devices based on the four tert-butyl substituted material TBCPF exhibit unusual tolerance of high dopant concentration up to 20% and marked reduction of efficiency roll-off at higher current, indicating significant suppression of self-quenching effect in organic electrophosphorescent devices by the substitution of steric bulks.  相似文献   

5.
6.
A carbazole homopolymer and carbazole copolymers based on 9,9'-dialkyl-[3,3']-bicarbazolyl, 2,5-diphenyl-[1,3,4]-oxadiazole and 9,9-bis(4-[3,7-dimethyloctyloxy]phenyl)fluorene were synthesized and their electrical and photophysical properties were characterized with respect to their application as host in phosphorescent polymer light-emitting diodes. It is shown that the triplet energy of a polymer depends on the specific connections between its building blocks. Without changing the composition of the polymer, its triplet energy can be increased from 2.3 to 2.6 eV by changing the way in which the different building blocks are coupled together. For poly(9-vinylcarbazole) (PVK), a carbazole polymer often used as host for high-energy triplet emitters in polymer light-emitting diodes, a large hole-injection barrier of about 1 eV exists due to the low-lying HOMO level of PVK. For all carbazole polymers presented here, the HOMO levels are much closer to the Fermi level of a commonly used anode such as ITO and/or a commonly used hole-injection layer such as PEDOT:PSS. This makes high current densities and consequently high luminance levels possible at moderate applied voltages in polymer light-emitting diodes. A double-layer polymer light-emitting diode is constructed comprising a PEDOT:PSS layer as hole-injection layer and a carbazole-oxadiazole copolymer doped with a green triplet emitter as emissive layer that shows an efficacy of 23 cd/A independent of current density and light output.  相似文献   

7.
An efficient host for blue and green electrophosphorescence, 4,6‐bis(diphenylphosphoryl)dibenzofuran ( o‐ DBFDPO ), with the structure of a short‐axis‐substituted dibenzofuran was designed and synthesised. It appears that the greater density of the diphenylphosphine oxide (DPPO) moieties in the short‐axis substitution configuration effectively restrains the intermolecular interactions, because only very weak π–π stacking interactions could be observed, with a centroid‐to‐centroid distance of 3.960 Å. The improved thermal stability of o‐ DBFDPO was corroborated by its very high glass transition temperature (Tg) of 191 °C, which is the result of the symmetric disubstitution structure. Photophysical investigation showed o‐ DBFDPO to be superior to the monosubstituted derivative, with a longer lifetime (1.95 ns) and a higher photoluminescent quantum efficiency (61 %). The lower first singlet state excited level (3.63 eV) of o‐ DBFDPO demonstrates the stronger polarisation effect attributable to the greater number of DPPO moieties. Simultaneously, an extremely high first triplet state excited level (T1) of 3.16 eV is observed, demonstrating the tiny influence of short‐axis substitution on T1. The improved carrier injection ability, which contributed to low driving voltages of blue‐ and green‐emitting phosphorescent organic light‐emitting diodes (PHOLEDs), was further confirmed by Gaussian calculation. Furthermore, the better thermal and morphological properties of o ‐DBFDPO and the matched frontier molecular orbital (FMO) levels in the devices significantly reduced efficiency roll‐offs. Efficient blue and green electrophosphorescence based on the o ‐DBFDPO host was demonstrated.  相似文献   

8.
The functional single-coordinate phosphine oxide ligands (4-diphenylaminophenyl)diphenylphosphine oxide (TAPO), (4-naphthalen-1-yl-phenylaminophenyl)diphenylphosphine oxide (NaDAPO), and 9-[4-(diphenylphosphinoyl)phenyl]-9H-carbazole (CPPO), as the direct combinations of hole-transporting moieties, and electron-transporting triphenylphosphine oxide (TPPO) were designed and synthesized (amines or carbazole), together with their Eu(III) complexes [Eu(tapo)(2)(tta)(3)] (1), [Eu(nadapo)(2)(tta)(3)] (2), and [Eu(cppo)(2)(tta)(3)] (3; TTA: 2-thenoyltrifluoroacetonate). The investigation indicated that by taking advantage of the modification inertia of the phosphine oxide ligands, the direct introduction of the hole-transport groups as chromophore made TAPO, NaDAPO, and CPPO obtain the most compact structure and mezzo S(1) and T(1) energy levels, which improved the intramolecular energy transfer in their Eu(III) complexes. The amorphous phase of 1-3 proved the weak intermolecular interaction, which resulted in extraordinarily low self-quenching of the complexes. The excellent double-carrier transport ability of the ligands was studied with Gaussian calculations, and the bipolar structure of TAPO and CPPO was proved. The great improvement of the double-carrier transport ability of 1-3 was shown by cyclic voltammetry. Their HOMO and LUMO energy levels of around 5.3 and 3.0 eV, respectively, are the best results for Eu(III) complexes reported so far. A single-layer organic light-emitting diode of 2 had the impressive brightness of 59 cd m(-2) which, to the best of our knowledge, is the highest reported so far. Both of the four-layer devices based on pure 1 and 2 had a maximum brightness of more than 1000 cd m(-2), turn-on voltages lower than 5 V, maximum external quantum yields of more than 3 % and excellent spectral stability.  相似文献   

9.
Quenching measurements of phosphorescence intensity and lifetime of benzophenone and its derivatives with electron-attracting substituents by arylketones with electron-releasing substituents, carried out in acetic acid, show that the quenching rate parameter kq depends on the structure of the two interacting partners. The kq value increases with the electron-donating power of the substituents in the quencher, approaching the diffusional value with the strongest electron-donating groups, whilst it decreases when electron-withdrawing substituents are present in the quenched species. The first effect is explained by an interaction mechanism where a charge transfer occurs from the quencher to the excited donor. The effect of donor structure on the kq value is ascribed to the contribution of a partial reversible energy transfer. A study of the dependence of the experimental quenching parameter on the donor concentration gives evidence for the reversible transfer process.  相似文献   

10.
Tris(o-hydroxyphenyl)phosphine oxide is introduced as a new colorimetric reagent for the determination of ferric iron in solutions 0.3–2.5M nitric acid. The only other cation known to interfere in the determination is the ceric ion (Ce+4). The colour of the complex is stable and is found to obey Beer's law over a wide concentration range.  相似文献   

11.
Numerous investigations have been carried out into the conversion of biogas into synthesis gas (a mixture of H(2) + CO) over Ni/YSZ anode cermet catalysts. Biogas is a variable mixture of gases consisting predominantly of methane and carbon dioxide (usually in a 2 : 1 ratio, but variable with source), with other constituents including sulfur-containing gases such as hydrogen sulfide, which can cause sulfur poisoning of nickel catalysts. The effect of temperature on carbon deposition and sulfur poisoning of 90 : 10 mol% Ni/YSZ under biogas conversion conditions has been investigated by carrying out a series of catalytic reactions of methane-rich (2 : 1) CH(4)/CO(2) mixtures in the absence and presence of H(2)S over the temperature range 750-1000 °C. The effect of ceria-doping on carbon dioxide reforming, carbon deposition and sulfur tolerance has also been investigated by carrying out a similar series of reactions over ceria-doped Ni/YSZ. Ceria was doped at 5 mol% of the nickel content to give an anode catalyst composition of 85.5 : 4.5 : 10 mol% Ni/CeO(2)/YSZ. Reactions were followed using quadrupolar mass spectrometry (QMS) and the amount of carbon deposition was analysed by subjecting the reacted catalyst samples to a post-reaction temperature programmed oxidation (TPO). On undoped Ni/YSZ, carbon deposition occurred predominantly through thermal decomposition of methane. Ceria-doping significantly suppressed methane decomposition and at high temperatures simultaneously promoted the reverse Boudouard reaction, significantly lowering carbon deposition. Sulfur poisoning of Ni/YSZ occurred in two phases, the first of which caused the most activity loss and was accelerated on increasing the reaction temperature, while the second phase had greater stability and became more favourable with increasing reaction temperature. Adding H(2)S significantly inhibited methane decomposition, resulting in much less carbon deposition. Ceria-doping significantly increased the sulfur tolerance of Ni/YSZ, however, in the presence of H(2)S ceria did not promote the reverse Boudouard reaction and at high temperatures carbon deposition was greater over ceria-doped Ni/YSZ. In order to further study the effects of ceria-doping, a solid oxide fuel cell (SOFC) was constructed with a ceria-doped anode cermet and its electrical performance on simulated biogas compared to hydrogen was tested. This fuel cell was subsequently ran for 1000 h on simulated biogas with no degradation in its overall electrical performance.  相似文献   

12.
Singlet and triplet calculations, including configuration interaction, are reported for H2CSi, HCSiH and CSiH2, and for the transition state on both surfaces.  相似文献   

13.
ZnWO4,as an environment-friendly and economic material,has the potential for Li ion batteries(LIB)application.In this paper,a facile method has been developed to synthesize ZnWO4supported on the reduced graphene oxide(RGO)to improve its LIB performance.The cuboid-like ZnWO4nanocrystals are prepared by directly adding Na2WO4 powders into the graphene oxide/Zn aqueous solution followed by a hydrothermal treatment.The high-resolution TEM,XRD and XPS characterizations were employed to demonstrate structural information of the as-prepared ZnWO4/RGO hybrids carefully.Besides,we also discussed the LIB properties of the hybrids based on the detailed galvanostatic charge-discharge cycling tests.As a result,the specific capacity of the as-prepared ZnWO4/RGO hybrids reached more than 477.3 mA h g 1after 40 cycles at a current density of 100 mA g 1(only less than 159 mA g 1for bare ZnWO4).During the whole cyclic process,the coulombic efficiency steadily kept the values higher than 90%.  相似文献   

14.
Research on Chemical Intermediates - This research effort reports the design and development of reduced graphene oxide/zinc ferrite (rGO/ZnFe2O4) nanocomposites for the photo-oxidative degradation...  相似文献   

15.
The structural characteristics and optical spectra of Y(P,V)O4:Dy3+phosphors obtained by solid state reaction, sol-gel and hydrothermal routes have been investigated and compared. The luminescence features of these materials show a complicate dependence on the composition, synthetic method and excitation conditions. The emission performance depends on different effects: host luminescence, energy transfer to the doping ions and host dependence of the Dy3+ emission properties. These effects have been rationalized in order to provide useful information for the development of a suitable material for the white light emitting phosphors technology.  相似文献   

16.
This paper reports the synthesis and physical properties of a series of bipolar host materials, using of a hole-transporting triphenylamine (TPA) monomer as a core incorporated with different numbers of diphenylphosphine oxide (PO) as electron-transporting moieties, 4-(diphenylphosphoryl)-N,N-diphenylaniline (DDPA), 4-(diphenylphosphoryl)-N-(4-(diphenylphosphoryl)phenyl)-N-phenylaniline (DDPP), and tris(4-(diphenylphosphoryl)phenyl)amine (TDPA), for solution-processed deep-blue phosphorescent organic light-emitting devices (PhOLEDs). With the increasing numbers of PO units, the glass-transition temperature of those compounds rise gradually. Moreover, the newly synthesized compounds all possess high triplet energies, which can prevent back energy transfer between the host and dopant molecules, and are expected to serve as appropriate hosts for iridium(III) tris(3,5-difluoro-4-cyanophenyl)pyridinato-N,C′ (FCNIrpic). The solution-processed devices using DDPP and TDPA as the hosts for the phosphorescence emitter FCNIrpic showed the maximum luminance efficiencies of 9.7 and 6.6 cd A−1, respectively. The efficiency of TDPA based device shows nearly three times higher than the value of commonly used host material 1,3-bis(9-carbazolyl)benzene (mCP) with the same structure, which is outstanding with respect to other works related to the solution-processed deep-blue PhOLEDs based on small-molecule hosts.  相似文献   

17.
BODIPYs are renowned fluorescent dyes with strong and tunable absorption in the visible region, high thermal and photo-stability and exceptional fluorescence quantum yields. Transition metal complexes are the most commonly used triplet photosensitisers, but, recently, the use of organic dyes has emerged as a viable and more sustainable alternative. By proper design, BODIPY dyes have been turned from highly fluorescent labels into efficient triplet photosensitizers with strong absorption in the visible region (from green to orange). In this perspective, we report three design strategies: (i) halogenation of the dye skeleton, (ii) donor–acceptor dyads and (iii) BODIPY dimers. We compare pros and cons of these approaches in terms of optical and electrochemical properties and synthetic viability. The potential applications of these systems span from energy conversion to medicine and key examples are presented.

BODIPYs offer a versatile platform to build organic triplet photosensitisers for PDT, TTA upconversion and photocatalysis. Tuning their properties provides the opportunity of replacing heavy-metal complexes and can lead to improved sustainability.  相似文献   

18.
Bodipy derivatives containing excited state intramolecular proton transfer (ESIPT) chromophores 2-(2-hydroxyphenyl) benzothiazole and benzoxazole (HBT and HBO) subunits were prepared (7-10). The compounds show red-shifted UV-vis absorption (530-580 nm; ε up to 50000 M(-1) cm(-1)) and emission compared to both HBT/HBO and Bodipy. The new chromophores show small Stokes shift (45 nm) and high fluorescence quantum yields (Φ(F) up to 36%), which are in stark contrast to HBT and HBO (Stokes shift up to 180 nm and Φ(F) as low as 0.6%). On the basis of steady state and time-resolved absorption spectroscopy, as well as DFT/TDDFT calculations, we propose that 7-9 do not undergo ESIPT upon photoexcitation. Interestingly, nanosecond time-resolved transient absorption spectroscopy demonstrated that Bodipy-localized triplet excited states were populated for 7-10 upon photoexcitation; the lifetimes of the triplet excited states (τ(T)) are up to 195 μs. DFT calculations confirm the transient absorptions are due to the triplet state. Different from the previous report, we demonstrated that population of the triplet excited states is not the result of ESIPT. The compounds were used as organic triplet photosensitizers for photooxidation of 1,5-dihydroxylnaphthalene. One of the compounds is more efficient than the conventional [Ir(ppy)(2)(phen)][PF(6)] triplet photosensitizer. Our result will be useful for design of new Bodipy derivatives, ESIPT compounds, and organic triplet photosensitizers, as well as for applications of these compounds in photovoltaics, photocatalysis and luminescent materials, etc.  相似文献   

19.
Two types of metal-organic framework (MOF)/graphite oxide hybrid materials were prepared. One is based on a zinc-containing, MOF-5 and the other on a copper-containing HKUST-1. The materials are characterized by X-ray diffraction, sorption of nitrogen, thermal analyses, Fourier Transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Their features are compared to the ones of the parent materials. The water stability and ammonia adsorption capacity of the hybrid materials were also evaluated. It was found that the latter compounds exhibit features similar to the ones of the parent MOF. In most cases, their porosity increased compared to the one calculated considering the physical mixture of MOF and GO. This new porosity likely located between the two components of the hybrid materials is responsible for the enhanced ammonia adsorption capacity of the compounds. However, for both the zinc-based and the copper-based materials (MOFs and hybrid materials), a collapse of the framework was observed as a result of ammonia adsorption. This collapse is caused by the interactions of ammonia with the metallic centers of MOFs either by hydrogen bonding (zinc-based materials) or coordination and subsequent complexation (copper-based materials). Whereas the MOF-5 based compounds collapse in presence of humidity, the copper-based materials are stable.  相似文献   

20.
A sensitive and robust analytical method for spectrophotometric determination of ethyl xanthate, CH3CH2OCS2 at trace concentrations in pulp solutions from froth flotation process is proposed. The analytical method is based on the decomposition of ethyl xanthate, EtX, with 2.0 mol L−1 HCl generating ethanol and carbon disulfide, CS2. A gas diffusion cell assures that only the volatile compounds diffuse through a PTFE membrane towards an acceptor stream of deionized water, thus avoiding the interferences of non-volatile compounds and suspended particles. The CS2 is selectively detected by UV absorbance at 206 nm (? = 65,000 L mol−1 cm−1). The measured absorbance is directly proportional to EtX concentration present in the sample solutions. The Beer's law is obeyed in a 1 × 10−6 to 2 × 10−4 mol L−1 concentration range of ethyl xanthate in the pulp with an excellent correlation coefficient (r = 0.999) and a detection limit of 3.1 × 10−7 mol L−1, corresponding to 38 μg L−1. At flow rates of 200 μL min−1 of the donor stream and 100 μL min−1 of the acceptor channel a sampling rate of 15 injections per hour could be achieved with RSD < 2.3% (n = 10, 300 μL injections of 1 × 10−5 mol L−1 EtX). Two practical applications demonstrate the versatility of the FIA method: (i) evaluation the free EtX concentration during a laboratory study of the EtX adsorption capacity on pulverized sulfide ore (pyrite) and (ii) monitoring of EtX at different stages (from starting load to washing effluents) of a flotation pilot plant processing a Cu-Zn sulfide ore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号