首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments with trapped particles have demonstrated the existence of quantum jumps and the discrete nature of single-system dynamics in quantum mechanics. The concept of jumps is also a powerful tool for simulating and understanding open quantum systems. In non-Markovian systems jump probabilities can become negative due to memory effects between the system and its environment. We discuss a recently presented method that can handle both positive and negative probabilities and provides powerful insight into the dynamics of open systems with memory. The key element is a reversed quantum jump to a system state that was, in principle, already destroyed by an earlier normal jump. Instead of using artificial extensions of the system or exploiting hidden variables we take advantage of the information stored in the quantum ensemble itself.  相似文献   

2.
I attempt to develop further the statistical interpretation of quantum mechanics proposed by Einstein and developed by Popper, Ballentine, etc. Two ideas are proposed in the present paper. One is to interpret momentum as a property of an ensemble of similarly prepared systems which is not satisfied by any one member of the ensemble of systems. Momentum is regarded as a statistical parameter like temperature in statistical mechanics. The other is the holistic assumption that a probability distribution is determined as a whole as most likely to be realized. This is the same as the chief assumption in statistical mechanics, and maximum likelihood in classical statistics. These ideas enable us to understand statistically (1) the formalism of quantum mechanics, (2) Heisenberg's uncertainty relations, and (3) the origin of quantum equations. They also explain violation of Bell's inequality and the interference of probabilities.  相似文献   

3.
4.
In this paper an alternative approach to statistical mechanics based on the maximuminformation entropy principle (MaxEnt) is examined, specifically its close relation withthe Gibbs method of ensembles. It is shown that the MaxEnt formalism is the logicalextension of the Gibbs formalism of equilibrium statistical mechanics that is entirelyindependent of the frequentist interpretation of probabilities only as factual (i.e.experimentally verifiable) properties of the real world. Furthermore, we show that,consistently with the law of large numbers, the relative frequencies of the ensemble ofsystems prepared under identical conditions (i.e. identical constraints) actuallycorrespond to the MaxEnt probabilites in the limit of a large number of systems in theensemble. This result implies that the probabilities in statistical mechanics can beinterpreted, independently of the frequency interpretation, on the basis of the maximuminformation entropy principle.  相似文献   

5.
Jeffrey Bub 《Foundations of Physics》2010,40(9-10):1333-1340
Since the analysis by John Bell in 1965, the consensus in the literature is that von Neumann’s ‘no hidden variables’ proof fails to exclude any significant class of hidden variables. Bell raised the question whether it could be shown that any hidden variable theory would have to be nonlocal, and in this sense ‘like Bohm’s theory.’ His seminal result provides a positive answer to the question. I argue that Bell’s analysis misconstrues von Neumann’s argument. What von Neumann proved was the impossibility of recovering the quantum probabilities from a hidden variable theory of dispersion free (deterministic) states in which the quantum observables are represented as the ‘beables’ of the theory, to use Bell’s term. That is, the quantum probabilities could not reflect the distribution of pre-measurement values of beables, but would have to be derived in some other way, e.g., as in Bohm’s theory, where the probabilities are an artefact of a dynamical process that is not in fact a measurement of any beable of the system.  相似文献   

6.
Carrying out a research program outlined by John S. Bell in 1987, we arrive at a relativistic version of the Ghirardi-Rimini-Weber (GRW) model of spontaneous wavefunction collapse. The GRW model was proposed as a solution of the measurement problem of quantum mechanics and involves a stochastic and nonlinear modification of the Schrödinger equation. It deviates very little from the Schrödinger equation for microscopic systems but efficiently suppresses, for macroscopic systems, superpositions of macroscopically different states. As suggested by Bell, we take the primitive ontology, or local beables, of our model to be a discrete set of space-time points, at which the collapses are centered. This set is random with distribution determined by the initial wavefunction. Our model is nonlocal and violates Bell’s inequality though it does not make use of a preferred slicing of space-time or any other sort of synchronization of spacelike separated points. Like the GRW model, it reproduces the quantum probabilities in all cases presently testable, though it entails deviations from the quantum formalism that are in principle testable. Our model works in Minkowski space-time as well as in (well-behaved) curved background space-times.  相似文献   

7.
It is argued that a quantum mechanical analysis of the measurement process permits one to adjudicate between an individual system interpretation of the state vector and an ensemble interpretation, in favor of the latter. Possible changes to quantum mechanics that would be necessary to enable it to describe individual systems are discussed.  相似文献   

8.
It is argued that the measurement problem reduces to the problem of modeling quasi-classical systems in a modified quantum mechanics with superselection rules. A measurement theorem is proved, demonstrating, on the basis of a principle for selecting the quantities of a system that are determinate (i.e., have values) in a given state, that after a suitable interaction between a systemS and a quasi-classical systemM, essentially only the quantity measured in the interaction and the indicator quantity ofM are determinate. The theorem justifies interpreting the noncommutative algebra of observables of a quantum mechanical system as an algebra of beables, in Bell's sense.  相似文献   

9.
Interference and measurement aspects for the double coil resonance experiment are reanalyzed. The resulting situation is analogous to partial reduction of wave packet in quantum mechanics. Using convergence results of relative frequencies, magnitudes of the intensity are calculated when prior probabilities are assigned to the coefficients associated with the states.  相似文献   

10.
Quantum theory does not only predict probabilities, but also relative phases for any experiment, that involves measurements of an ensemble of systems at different moments of time. We argue, that any operational formulation of quantum theory needs an algebra of observables and an object that incorporates the information about relative phases and probabilities. The latter is the (de)coherence functional, introduced by the consistent histories approach to quantum theory. The acceptance of relative phases as a primitive ingredient of any quantum theory, liberates us from the need to use a Hilbert space and non-commutative observables. It is shown, that quantum phenomena are adequately described by a theory of relative phases and non-additive probabilities on the classical phase space. The only difference lies on the type of observables that correspond to sharp measurements. This class of theories does not suffer from the consequences of Bell's theorem (it is not a theory of Kolmogorov probabilities) and Kochen–Specker's theorem (it has distributive logic). We discuss its predictability properties, the meaning of the classical limit and attempt to see if it can be experimentally distinguished from standard quantum theory. Our construction is operational and statistical, in the spirit of Copenhagen, but makes plausible the existence of a realist, geometric theory for individual quantum systems.  相似文献   

11.
讨论了密度矩阵的不同定义。建议使用完全密度矩阵、压缩密度矩阵和约化密度矩阵分别描写一个封闭量子体系的、一个系综中平均分子的和一个复合体系中的一个子系统的密度矩阵。强调这与现在人们认为的具有相同压缩密度矩阵的系综是完全等价的结论完全不同,具有相同压缩密度矩阵但是成分不同的系综可以通过系综整体测量来区别。作为一个应用,现在认为现有的核磁共振量子计算中没有纠缠的结论是没有根据的。Density matrix is one important tool in quantum mechanics, and it has very broad applications. However there are different definitions about the density matrix, and they describe quite different systems. There has been some misunderstanding about the density matrix in the community, and these misunderstandings hinder the right application of the density matrix. In this article, we discuss the different definitions of density matrix. We suggest to use the full density matrix, compressed density matrix and the reduced density matrix to describe the state of a complete quantum system, the state of an averaged particle in an ensemble and the state of part of a composite system. We stress that contrary to the wide accepted understanding that ensembles with the same compressed density matrix are physically indistinguishable, they are distinguishable through the so-called ensemble measurement. As an application, we suggest that the present conclusion that the present-day nuclear magnetic resonance quantum computation does not have quantum entanglement is groundless.  相似文献   

12.
13.
We consider the possibility that the relative phase in quantum mechanics plays a role in determining measurement outcome and could therefore serve as a “hidden” variable. The Born rule for measurement equates the probability for a given outcome with the absolute square of the coefficient of the basis state, which by design removes the relative phase from the formulation. The value of this phase at the moment of measurement naturally averages out in an ensemble, which would prevent any dependence from being observed, and we show that conventional frequency-spectroscopy measurements on discrete quantum systems cannot be imposed at a specific phase due to a straightforward uncertainty relation. We lay out general conditions for imposing measurements at a specific value of the relative phase so that the possibility of its role as a hidden variable can be tested, and we discuss implementation for the specific case of an atomic two-state system with laser-induced fluorescence for measurement.  相似文献   

14.
15.
I define sublaltices of quantum propositions that can be taken as having determinate (but perhaps unknown) truth values for a given quantum state, in the sense that sufficiently many two-valued maps satisfying a Boolean homomorphism condition exist on each determinate sublattice to generate a Kolmogorov probability space for the probabilities defined by the slate. I show that these sublattices are maximal, subject to certain constraints, from which it follows easily that they are unique. I discuss the relevance of this result for the measurement problem, relating it to an early proposal by Jauch and Piron for defining a new notion of state for quantum systems, to a recent uniqueness proof by Clifton for the sublattice of propositions specified as determinate by modal interpretations of quantum mechanics that exploit the polar decompostion theorem, and to my own previous suggestions for interpreting quantum mechanics without the projection postulate.  相似文献   

16.
Using Schrödinger's generalized probability relations of quantum mechanics, it is possible to generate a canonical ensemble, the ensemble normally associated with thermodynamic equilibrium, by at least two methods, statistical mixing and subensemble selection, that do not involve thermodynamic equilibration. Thus the question arises as to whether an observer making measurements upon systems from a canonical ensemble can determine whether the systems were prepared by mixing, equilibration, or selection. Investigation of this issue exposes antinomies in quantum statistical thermodynamics. It is conjectured that resolution of these paradoxes may involve a new law of motion in quantum dynamics.  相似文献   

17.
18.
We use joint probabilities to analyze the EPR argument in the Bohm's example of spins.(1) The properties of distribution functions for two, three, or more noncommuting spin components are explicitly studied and their limitations are pointed out. Within the statistical ensemble interpretation of quantum theory (where only statements about repeated events can be made), the incompleteness of quantum theory does not follow, as the consistent use of joint probabilities shows. This does not exclude a completion of quantum mechanics, going beyond it, by a more general theory of single events, using hidden variables, for example.  相似文献   

19.
Some interpretations of quantum mechanics regard a mixed quantum state as a ensemble, each individual member of which has a definite but unknown state vector. Other interpretations ascribe a state vector only to anensemble of similarly prepared systems, but not to anindividual. Previous attempts to detect the hypothetical individual state vectors have failed, essentially because the state operator (density matrix) enters the relevant equations linearly. An example from nonlinear dynamics, in which a density matrix enters nonlinearly, is examined because it might appear to circumvent this difficulty. However, it is shown that the hypothetical individual state vectors can not be detected this way, so the adequacy of theensemble interpretation survives a critical test.  相似文献   

20.
《Physics letters. A》2020,384(28):126725
Everettian Quantum Mechanics, or the Many Worlds Interpretation, lacks an explanation for quantum probabilities. We show that the values given by the Born rule equal projection factors, describing the contraction of Lebesgue measures in orthogonal projections from the complex line of a quantum state to eigenspaces of an observable. Unit total probability corresponds to a complex Pythagorean theorem: the measure of a subset of the complex line is the sum of the measures of its projections on all eigenspaces.Postulating the existence of a continuum infinity of identical quantum universes, all with the same quasi-classical worlds, we show that projection factors give relative amounts of worlds. These appear as relative frequencies of results in quantum experiments, and play the role of probabilities in decisions and inference. This solves the probability problem of Everett's theory, allowing its preferred basis problem to be solved as well, and may help settle questions about the nature of probability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号