首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Lin CH  Chang CC  Cheng SF  Chang DK 《Electrophoresis》2008,29(15):3175-3182
The transmembrane glycoprotein gp41 of human immunodeficiency virus has been proposed to form trimer-of-hairpin during virus-cell membrane fusion. To investigate its oligomerization propensity under soluble and membrane-mimic conditions, sodium salt of perfluorooctanoate (PFO) was applied. A recombinant gp41 ectodomain devoid of disulfide linkage was overexpressed in Escherichia coli and characterized by MS and circular dichroism spectropolarimetry in PFO solution in comparison to SDS. The helical content of this ectodomain in PFO is higher than that in SDS. Notably, PFO employed in PAGE clearly conduced to the formation of trimer under the optimized condition as visualized in the gel. In addition, the proteins expressed from the two mutants in the heptad repeat (HR) domains of gp41, I62P, and N126K, were also examined by the PFO-PAGE analysis for functional ramification of molecular organization. Remarkably, the I62P mutation completely abolished the gp41 trimer formation, whereas the N126K mutation resulted in a more stable trimer. The data suggested that PFO-PAGE analysis is appropriate for evaluating the effect of mutations on the trimerization of gp41 and other fusion proteins which may be implicated in the alteration of their fusogenicity.  相似文献   

2.
Control of the helical sense in α‐sexithiophene (6T) through pH‐responsive wrapping with left‐handed‐helical amylose is demonstrated. A change in pH of the medium caused a significant conformational change in amylose as the host polymer, which resulted in either supramolecular complexation with 6T as the guest molecule to induce optical activity or decomplexation leading to loss of optical activity. Furthermore, we observed that chirality reversal in 6T does not require hosts of opposite helical chirality, but can be made possible simply by taking advantage of the pH sensitivity of the amylose folding, which is dependent on the pH history of the aqueous medium. In helical amylose, 6T assumes a clockwise‐twisted conformation when the pH is changed from acidic to neutral, but assumes an anticlockwise‐twisted conformation when the aqueous solution is acidified from very basic conditions.  相似文献   

3.
Viard M  Blumenthal R  Raviv Y 《Electrophoresis》2002,23(11):1659-1666
We describe a protocol for preparative-scale purification of the fusion protein of the human immunodeficiency virus type 1 (HIV-1), gp41, from cells overexpressing the viral envelope proteins and from HIV-1 isolates. In the first step, the proteins were extracted from the membrane in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer. The extract was then subjected to separation by continuous elution electrophoresis using a nonionic or zwitterionic detergent in the mobile elution buffer, which results in the simultaneous exchange of SDS with that detergent. The separated proteins were obtained in an SDS-free buffer containing either Brij, 3-[(3-chloramidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) or Triton X-100 and could then be subjected to subsequent purification steps like isoelectric focusing in the second dimension or immunoaffinity chromatography. The dilute protein fraction was concentrated and applied on a 10 mL immunoaffinity column packed with anti-gp41 monoclonal antibody immobilized on protein-G sepharose. The protein was eluted from the column at pH 2.7 and obtained in pure form in amounts of 30-50 micrograms that constituted a yield of 1%. The pure gp41 could not be sustained in solution in the absence of detergent and was not susceptible to proteolytic digestion by trypsin. The identification of the protein and the degree of purity was confirmed indirectly using surface enhanced laser desorption ionization-time of flight-mass spectrometry (SELDI-TOF-MS). The possible application of this approach for the isolation of integral membrane proteins with the propensity to undergo spontaneous folding and aggregation is being discussed.  相似文献   

4.
It is generally assumed that folding intermediates contain partially formed native-like secondary structures. However, if we consider the fact that the conformational stability of the intermediate state is simpler than that of the native state, it would be expected that the secondary structures in a folding intermediate would not necessarily be similar to those of the native state. beta-Lactoglobulin is a predominantly beta-sheet protein, although it has a markedly high intrinsic preference for alpha-helical structure. The formation of non-native alpha-helical intermediate of beta-lactoglobulin was induced by n-alkyl sulfates including sodium octyl sulfate, SOS; sodium decyl sulfate, SDeS; sodium dodecyl sulfate, SDS; and sodium tetradecyl sulfate, STS at special condition. The effect of n-alkyl sulfates on the structure of native beta-lactoglobulin at pH 2 was utilized to investigate the contribution of hydrophobic interactions to the stability of non-native alpha-helical intermediate. The addition of various concentrations of n-alkyl sulfates to the native state of beta-lactoglobulin (pH 2) appears to support the stabilized form of non-native alpha-helical intermediate at pH 2. The m values of the intermediate state of beta-lactoglobulin by SOS, SDeS, SDS and STS showed substantial variation. The enhancement of m values as the stability criterion of non-native alpha-helical intermediate state corresponded with increasing chain length of the cited n-alkyl sulfates. The present results suggest that the folding reaction of beta-lactoglobulin follows a non-hierarchical mechanism and hydrophobic interactions play important roles in stabilizing the non-native alpha-helical intermediate state.  相似文献   

5.
Membrane-mediated structural modulation in two short fragments of the human HIV-1 envelope protein gp41 is demonstrated. Derived from the C-terminal membrane proximal external (MPE) and N-terminal fusion peptide proximal (FPP) regions, these peptides are widely separated in the primary sequence but form tertiary contacts during the intermediate (hemifusion) phase of HIV infection. The structural perturbations observed at the membrane interface offer evidence of rudimentary regulatory mechanisms operating in the free peptides which may be relevant in the biological system. No such regulatory phenomena were observed for the individual peptides in a membrane environment or between the peptides in aqueous solutions. Structure determination is made using a combination of circular and linear dichroism spectroscopy (supported by calorimetric measurements) and molecular dynamics simulations. Specifically, we show that these peptides interact locally without the conformational support of helical heptad repeat regions in native gp41 and that the modulation is not mutual with the FPP peptide operating as a primary regulator of the MPE-FPP interactions in the hemifusion phase.  相似文献   

6.
The folding mechanism and dynamics of a helical protein may strongly depend on how quickly its constituent alpha-helices can fold independently. Thus, our understanding of the protein folding problem may be greatly enhanced by a systematic survey of the folding rates of individual alpha-helical segments derived from their parent proteins. As a first step, we have studied the relaxation kinetics of the central helix (L9:41-74) of the ribosomal protein L9 from the bacterium Bacillus stearothermophilus , in response to a temperature-jump ( T-jump) using infrared spectroscopy. L9:41-74 has been shown to exhibit unusually high helicity in aqueous solution due to a series of side chain-side chain interactions, most of which are electrostatic in nature, while still remaining monomeric over a wide concentration range. Thus, this peptide represents an excellent model system not only for examining how the folding rate of naturally occurring helices differs from that of the widely studied alanine-based peptides, but also for estimating the folding speed limit of (small) helical proteins. Our results show that the T-jump induced relaxation rate of L9:41-74 is significantly slower than that of alanine-based peptides. For example, at 11 degrees C its relaxation time constant is about 2 micros, roughly seven times slower than that of SPE(5), an alanine-rich peptide of similar chain length. In addition, our results show that the folding rate of a truncated version of L9:41-74 is even slower. Taken together, these results suggest that individual alpha-helical segments in proteins may fold on a time scale that is significantly slower than the folding time of alanine-based peptides. Furthermore, we argue that the relaxation rate of L9:41-74 measured between 8 and 45 degrees C provides a realistic estimate of the ultimate folding rate of (small) helical proteins over this temperature range.  相似文献   

7.
Under the influence of a changed environment, amyloid‐forming proteins partially unfold and assemble into insoluble β‐sheet rich fibrils. Molecular‐level characterization of these assembly processes has been proven to be very challenging, and for this reason several simplified model systems have been developed over recent years. Herein, we present a series of three de novo designed model peptides that adopt different conformations and aggregate morphologies depending on concentration, pH value, and ionic strength. The design strictly follows the characteristic heptad repeat of the α‐helical coiled‐coil structural motif. In all peptides, three valine residues, known to prefer the β‐sheet conformation, have been incorporated at the solvent‐exposed b, c, and f positions to make the system prone to amyloid formation. Additionally, pH‐controllable intramolecular electrostatic repulsions between equally charged lysine (peptide A) or glutamate (peptide B) residues were introduced along one side of the helical cylinder. The conformational behavior was monitored by circular dichroism spectroscopic analysis and thioflavin T fluorescence, and the resulting aggregates were further characterized by transmission electron microscopy. Whereas uninterrupted α‐helical aggregates are found at neutral pH, Coulomb repulsions between lysine residues in peptide A destabilize the helical conformation at acidic pH values and trigger an assembly into amyloid‐like fibrils. Peptide B features a glutamate‐based switch functionality and exhibits opposite pH‐dependent folding behavior. In this case, α‐helical aggregates are found under acidic conditions, whereas amyloids are formed at neutral pH. To further validate the pH switch concept, peptide C was designed by including serine residues, thus resulting in an equal distribution of charged residues. Surprisingly, amyloid formation is observed at all pH values investigated for peptide C. The results of further investigations into the effect of different salts, however, strongly support the crucial role of intramolecular charge repulsions in the model system presented herein.  相似文献   

8.
Amyloid deposition is a hallmark of many diseases, such as the Alzheimer’s disease. Numerous amyloidogenic proteins, including the islet amyloid polypeptide (IAPP) associated with type II diabetes, are natively unfolded and need to undergo conformational rearrangements allowing the formation of locally ordered structure(s) to initiate self‐assembly. Recent studies have indicated that the formation of α‐helical intermediates accelerates fibrillization, suggesting that these species are on‐pathway to amyloid assembly. By identifying an IAPP derivative with a restricted conformational ensemble that co‐assembles with IAPP, we observed that helical species were off‐pathway in homogenous environment and in presence of lipid bilayers or glycosaminoglycans. Moreover, preventing helical folding potentiated membrane perturbation and IAPP cytotoxicity, indicating that stabilization of helical motif(s) is a promising strategy to prevent cell degeneration associated with amyloidogenesis.  相似文献   

9.
Bovine serum albumin (BSA) is a soft globular protein that undergoes conformational changes through several identified transition steps in the pH range 2–13.5. The ability to change conformation makes BSA capable of complexing different ligands from fatty acids to cations or drugs and carries them in the bloodstream. Microcalorimetric titration of BSA with NaOH solution was performed to measure the enthalpy of conformational changes. Two exothermic enthalpy changes were found in the course of the titration between pH 3 and 9.5, which can be identified with the E–F, and the F–N transitions. The enthalpy change at pH 3.5 (transition from the E to the F form of BSA, folding of intra-domain helices in domain I) is independent of the protein concentration. The second transition (F–N, folding of domain III) was observed at pH 4.8 for the 0.1% BSA solution, but it shifted to higher pH values as the protein concentration increased to 0.2% and 0.3%. The tightening of the protein structure with increasing pH was verified measuring intrinsic fluorescence of tryptophan residues. At even higher pH value, pH 10.5, fluorescence measurements revealed protein expansion. The BSA conformational changes were also measured by dynamic light scattering. The hydrodynamic diameter was smaller at the i.e.p. of BSA (5–7 nm at pH ~5) and larger at the two ends of the pH range (17.5 nm at pH 2 and 8.3 nm at pH 10).  相似文献   

10.
Design of functional foldamers requires knowledge of the conformational propensities of constituent residues. Here, we explore the effects of variations in both alpha-amino acid and beta-amino acid substitution on alpha/beta-peptide helicity. We also report the first X-ray crystal structure of a helical alpha/beta-peptide. We conclude that a certain amount of conformational preorganization in alpha/beta-peptides (via the inclusion of constrained beta-amino acids or alpha,alpha-disubstituted alpha-amino acids) is needed to promote helical folding; acyclic beta-amino acids and beta-branched alpha-amino acids are tolerated to only a limited extent.  相似文献   

11.
The authors study how the simultaneous presence of short-range secondary and long-range tertiary interactions controls the folding and collapse behavior of a helical macromolecule. The secondary interactions stabilize the helical conformation of the chain, while the tertiary interactions govern its overall three-dimensional shape. The authors have carried out Monte Carlo simulations to study the effect of chain length on the folding and collapse behavior of the chain. They have calculated state diagrams for four chain lengths and found that the physics is very rich with a plethora of stable conformational states. In addition to the helix-coil and coil-globule transitions, their model describes the coupling between them which takes place at low temperatures. Under these conditions, their model predicts a cascade of continuous, conformational transitions between states with an increase in the strength of the tertiary interactions. During each transition the chain shrinks, i.e., collapses, in a rapid and specific manner. In addition, the number of the transitions increases with increasing chain length. They have also found that the low-temperature regions of the state diagram between the transition lines cannot be associated with specific structures of the chain, but rather, with ensembles of various configurations of the chain with similar characteristics. Based on these results the authors propose a mechanism for the folding and collapse of helical macromolecules which is further supported by the analysis of configurational, configurational, and thermodynamic properties of the chain.  相似文献   

12.
N,N'-linked oligoureas with proteinogenic side chains are peptide backbone mimetics belonging to the gamma-peptide lineage. In pyridine, heptamer 4 adopts a stable helical fold reminiscent of the 2.6(14) helical structure proposed for gamma-peptide foldamers. In the present study, we have used a combination of CD and NMR spectroscopies to correlate far-UV chiroptical properties and conformational preferences of oligoureas as a function of chain length from tetramer to nonamer. Both the intensity of the CD spectra and NMR chemical shift differences between alphaCH2 diastereotopic protons experienced a marked increase for oligomers between four and seven residues. No major change in CD spectra occurred between seven and nine residues, thus suggesting that seven residues could be the minimum length required for stabilizing a dominant conformation. Unexpectedly, in-depth NMR conformational investigation of heptamer 4 in CD3OH revealed that the 2.5 helix probably coexists with partially (un)folded conformations and that Z-E urea isomerization occurs, to some degree, along the backbone. Removing unfavorable electrostatic interactions at the amino terminal end of 4 and adding one H-bond acceptor by acylation with alkyl isocyanate (4 --> 7) was found to reinforce the 2.5 helical population. The stability of the 2.5 helical fold in MeOH is further discussed in light of unrestrained molecular dynamics (MD) simulation. Taken together, these new data provide additional insight into the folding propensity of oligoureas in protic solvent and should be of practical value for the design of helical bioactive oligoureas.  相似文献   

13.
Peptide nucleic acid (PNA) is a synthetic analogue of DNA and RNA, developed more than a decade ago in which the naturally occurring sugar phosphate backbone has been replaced by the N-(2-aminoethyl) glycine units. Unlike DNA or RNA in the unhybridized state (single strand) which can adopt a helical structure through base-stacking, although highly flexible, PNA does not have a well-defined conformational folding in solution. Herein, we show that a simple backbone modification at the gamma-position of the N-(2-aminoethyl) glycine unit can transform a randomly folded PNA into a helical structure. Spectroscopic studies showed that helical induction occurs in the C- to N-terminal direction and is sterically driven. This finding has important implication not only on the future design of nucleic acid mimics but also on the design of novel materials, where molecular organization and efficient electronic coupling are desired.  相似文献   

14.
The manipulation of the adsorption of the anionic surfactant, sodium dodecyl sulfate, SDS, onto hydrophilic silica by the polyelectrolytes, polyethyleneimine, PEI, ethoxylated PEI, and the polyamine, pentaethylenehexamine, has been studied using neutron reflectometry. The adsorption of a thin PEI layer onto hydrophilic silica promotes a strong reversible adsorption of the SDS through surface charge reversal induced by the PEI at pH 7. At pH 2.4, a much thicker adsorbed PEI layer is partially swelled by the SDS, and the SDS adsorption is now no longer completely reversible. At pH 10, there is some penetration of SDS and solvent into a thin PEI layer, and the SDS adsorption is again not fully reversible. Ethoxylation of the PEI (PEI-EO(1) and PEI-EO(7)) results in a much weaker and fragile PEI and SDS adsorption at both pH 3 and pH 10, and both polymer and surfactant desorb at higher surfactant concentrations (>critical micellar concentration, cmc). For the polyamine, pentaethylenehexamine, adsorption of a layer of intermediate thickness is observed at pH 10, but at pH 3, no polyamine adsorption is evident; and at both pH 3 and pH 10, no SDS adsorption is observed. The results presented here show that, for the amine-based polyelectrolytes, polymer architecture, molecular weight, and pH can be used to manipulate the surface affinity for anionic surfactant (SDS) adsorption onto polyelectrolyte-coated hydrophilic silica surfaces.  相似文献   

15.
The interaction between konjac glucomannan (KGM) and an anionic surfactant, sodium dodecyl sulfate (SDS) is studied by rheological, circular dichroism (CD), conductivity, electron spin resonance (ESR), and FT-IR measurements. Since KGM is a neutral polysaccharide and has no significant hydrophobic side groups, the critical micelle concentration value of SDS is not influenced with the addition of KGM, and no marked binding occurs between them. SDS makes no conformational changes of KGM with or without heat treatment. The weak alkaline character of SDS induces the deacetylation of KGM chains and makes it form gels with heat treatment. At the same pH value, the gelation time needed for KGM by using SDS as the coagulant is shorter than that by using Na2CO3. The addition of SDS promotes the gelation process of KGM, indicating that although the interaction is weak, SDS micelles seem to play an important role in the gelation of KGM.  相似文献   

16.
The analysis of the folding mechanism in peptides adopting well‐defined secondary structure is fundamental to understand protein folding. Herein, we describe the thermal unfolding of a 15‐mer vascular endothelial growth factor mimicking α‐helical peptide (QKL10A) through the combination of spectroscopic and computational analyses. In particular, on the basis of the temperature dependencies of QKL10A Hα chemical shifts we show that the first phase of the thermal helix unfolding, ending at around 320 K, involves mainly the terminal regions. A second phase of the transition, ending at around 333 K, comprises the central helical region of the peptide. The determination of high‐resolution QKL10A conformational preferences in water at 313 K allowed us to identify, at atomic resolution, one intermediate of the folding–unfolding pathway. Molecular dynamics simulations corroborate experimental observations detecting a stable central helical turn, which represents the most probable site for the helix nucleation in the folding direction. The data presented herein allows us to draw a folding–unfolding picture for the small peptide QKL10A compatible with the nucleation–propagation model. This study, besides contributing to the basic field of peptide helix folding, is useful to gain an insight into the design of stable helical peptides, which could find applications as molecular scaffolds to target protein–protein interactions.  相似文献   

17.
Nano-electrospray ionization mass spectrometry (nano-ESI-MS) was used to monitor the effect of trifluoroethanol (TFE) on the conformational properties of beta-lactoglobulin (BLG). TFE stabilizes protein secondary structure, particularly alpha-helices. However, it also acts as a denaturant above critical concentrations. In the case of BLG, TFE at low concentrations is known to induce formation of an equilibrium intermediate that contains non-native helical structure. Such an intermediate is thought to form also under physiological conditions, playing a role in BLG folding in vivo by preventing aggregation. This well-characterized system was chosen in order to test species distributions obtained by nano-ESI-MS. BLG spectra at increasing concentrations of TFE at pH 2 indicate transient accumulation of a conformer whose charge-state distribution (CSD) falls between that of the native and that of the denatured protein, indicating that the TFE-induced, partially folded form can be selectively monitored by this technique. The condition of its maximum accumulation corresponds to 16% TFE, in excellent agreement with results from solution experiments. In contrast, titrations with methanol or acetonitrile (ACN) reveal apparent two-state transitions from native to fully unfolded BLG. At 10% TFE, the protein appears to be still fully folded at room temperature but, if unfolding is elicited by the combination with other denaturing agents, e.g. heat or low concentrations of ACN, it proceeds via formation of the intermediate. Thus, TFE can also induce formation of the BLG intermediate in synergism with generic denaturing agents. This study indicates good agreement between ESI-MS and other biophysical methods monitoring protein conformational transitions in the presence of TFE.  相似文献   

18.
19.
The refolding mechanism of apomyoglobin (apoMb) subsequent to high-temperature unfolding has been examined using computer simulations with atomic level detail. The folding of this protein has been extensively studied experimentally, providing a large database of folding parameters which can be probed using simulations. In the present study, 4-folding trajectories of apoMb were computed starting from coiled structures. A crystal structure of sperm whale myoglobin taken from the Protein Data Bank was used to construct the final native conformation by removal of the heme group followed by energy optimization. The initial unfolded conformations were obtained from high-temperature molecular dynamics simulations. Room-temperature refolding trajectories at neutral pH were obtained using the stochastic difference equation in length algorithm. The folding trajectories were compared with experimental results and two previous molecular dynamics studies at low pH. In contrast to the previous simulations, an extended intermediate with large helical content was not observed. In the present study, a structural collapse occurs without formation of helices or native contacts. Once the protein structure is more compact (radius of gyration<18 A) secondary and tertiary structures appear. These results suggest that apoMb follows a different folding pathway after high-temperature denaturation.  相似文献   

20.
Protein charge-state distributions (CSDs) in electrospray-ionization mass spectrometry (ESI-MS) represent a sensitive tool to probe different conformational states. We describe here the effect of trifluoroethanol (TFE) on cytochrome c equilibrium unfolding at different pH by nano-ESI-MS. While even low concentrations of TFE destabilize the protein native structure at low pH, a TFE content of 2.5%-5% is found to favor cyt c folding at pH approximately 7. Furthermore, we perform comparison of CSDs obtained by time-of-flight (ToF) and Fourier-transform-ion- cyclotron-resonance (FT-ICR) mass analyzers. To this purpose, we analyze spectra of cyt c in the presence of different kind of denaturants. In particular, experiments with 1-propanol suggest that also by FT-ICR-MS, as previously observed on an ESI-ToF instrument, CSDs do not appear to be controlled by the solvent surface tension as predicted by the Rayleigh-charge model. Moreover, there is general good agreement in conformational effects revealed by the different instruments under several buffer conditions. Nevertheless, the ToF instrument appears to discriminate better between unfolded and partially unfolded forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号