首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical scanning tunneling microscopy was used to study the structural evolution of adsorbed CO during preoxidation on Pt(111) modified with spontaneously deposited Ru. During the preoxidation process, a phase transition was observed from (2 × 2)-3CO-α to (√19 × √19)R23.4°-13CO via the transient structures (2 × 2)-3CO-β and (1 × 1)-CO. A comparison of these structural changes with those that occur on unmodified Pt(111) revealed that the presence of Ru resulted in higher populations of transient structures at lower potentials and a cathodic shift in the potential at which preoxidation is complete. These observations are discussed in terms of increased mobility of adsorbed CO in the presence of Ru.  相似文献   

2.
The chemisorption of NO on clean Pt(111), Rh/Pt(111) alloy, and Pd/Pt(111) alloy surfaces has been studied by first principles density functional theory (DFT) computations. It was found that the surface compositions of the surface alloys have very different effects on the adsorption of NO on Rh/Pt(111) versus that on Pd/Pt(111). This is due to the different bond strength between the two metals in each alloy system. A complex d-band center weighting model developed by authors in a previous study for SO2 adsorption is demonstrated to be necessary for quantifying NO adsorption on Pd/Pt(111). A strong linear relationship between the weighted positions of the d states of the surfaces and the molecular NO adsorption energies shows the closer the weighted d-band center is shifted to the Fermi energy level, the stronger the adsorption of NO will be. The consequences of this study for the optimized design of three-way automotive catalysts, (TWC) are also discussed.  相似文献   

3.
The variation in CO adsorption structures during the preoxidation of CO on Os-modified Pt(111) (Pt(111)/Os) was investigated using cyclic voltammetry and electrochemical scanning tunneling microscopy. The spontaneous deposition of Os on Pt(111) resulted in randomly scattered islands with a coverage range of 0.13-0.54. During preoxidation on Pt(111)/Os, a phase transition from (2 × 2)-α to (√19 × √19) via the transient structures of (2 × 2)-β and (1 × 1) took place as on unmodified Pt(111). As the amount of Os increased, however, the transient structures of (2 × 2)-β and (1 × 1) appeared at lower potentials with higher populations. When the population of the transient structures was greater than 50%, an oxidative CO stripping process took place to the structure of (√19 × √19), completing the preoxidation. These observations strongly support the idea that the presence of Os increases the mobility of adsorbed CO by electronic modification of the Pt(111) surface (electronic effect). In addition, the results obtained with Pt(111)/Os were compared with those of Pt(111)/Ru.  相似文献   

4.
Calculations are presented which determine sticking probabilities for CO on a Pt(111) crystal as a function of the rotational excitation of the incident molecule. We generally find the rotational state dependence to be negligible except for J values corresponding to the high-energy tail of the thermal distribution, a result is attributable to the strong orientational dependence of the molecule-surface potential.  相似文献   

5.
The electronic and chemical (adsorption) properties of bimetallic Ag/Pt(111) surfaces and their modification upon surface alloy formation, that is, during intermixing of Ag and Pt atoms in the top atomic layer upon annealing, were studied by X‐ray photoelectron spectroscopy (XPS) and, using CO as probe molecule, by temperature‐programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), respectively. The surface alloys are prepared by deposition of sub‐monolayer Ag amounts on a Pt(111) surface at room temperature, leading to extended Ag monolayer islands on the substrate, and subsequent annealing of these surfaces. Surface alloy formation starts at ≈600–650 K, which is evidenced by core‐level shifts (CLSs) of the Ag(3d5/2) signal. A distinct change of the CO adsorption properties is observed when going to the intermixed PtAg surface alloys. Most prominently, we find the growth of a new desorption feature at higher temperature (≈550 K) in the TPD spectra upon surface alloy formation. This goes along with a shift of the COad‐related IR bands to lower wave number. Surface alloy formation is almost completed after heating to 700 K.  相似文献   

6.
The isotopic exchange of CO adsorbed on Pt(111) was studied using polarization modulation IR reflection absorption spectroscopy (PM-IRRAS) and temperature programmed desorption. It was found that the rate constants for the exchange reaction are much higher than would be expected from previous investigations of CO adsorbed on Pt nanoparticles. The adsorption of CO on Pt(111) under elevated pressures of CO and H(2) was also studied using PM-IRRAS. It was seen that CO pressures above 1 mbar lead to a shift in the absorption peak arising from CO adsorbed on a bridge site from 1850 to 1875 cm(-1). Exposing the CO-covered Pt(111) surface to 1000 mbar H(2) did not lead to any significant desorption of CO at room temperature, whereas at 363 K H(2) exposure did lead to a significant desorption of CO, due to the increased chemical potential of H(2). In a mixture of CO and H(2) with partial pressures of 0.01 mbar and 1000 mbar, respectively, no significant effect of H(2) on the PM-IRRAS spectrum was seen at temperatures below 423 K.  相似文献   

7.
To enable the development of low temperature fuel cells, significant improvements are required to the efficiency of the Pt electrocatalysts at the cathode, where oxygen reduction takes place. Herein, we study the effect of subsurface solute metals on the reactivity of Pt, using a Cu/Pt(111) near-surface alloy. Our investigations incorporate electrochemical measurements, ultrahigh vacuum experiments, and density functional theory. Changes to the OH binding energy, ΔE(OH), were monitored in situ and adjusted continuously through the subsurface Cu coverage. The incorporation of submonolayer quantities of Cu into Pt(111) resulted in an 8-fold improvement in oxygen reduction activity. The most optimal catalyst for oxygen reduction has an ΔE(OH) ≈ 0.1 eV weaker than that of pure Pt, validating earlier theoretical predictions.  相似文献   

8.
The electronic interaction between water and a Pt(111) surface as evaluated for different Ptx(H2O)y clusters is discussed. Hartree–Fock–Slater (HFS ) one-electron ground state energies, ionization potentials, partial densities of states, and Mulliken occupation numbers are related to bonding shifts, as well as initial and final state screening for different orientations of the molecule. The formation of Pt? H2O bonds are sensitive to the orientation since surface oriented H atoms bridge the spatial separation between O 2p and Pt 5d orbitals and thus increase the intermixing of metal and adsorbate orbitals. The dipole moment and the net charge of the H2O molecule is also discussed. Finally, approximations of the metal–H2O potential for use in statistical models of the liquid–metal interface are suggested.  相似文献   

9.
采用密度泛函理论,对Pt(111)和Pt3Ni(111)表面上CO和O的单独吸附、共吸附以及CO的氧化反应进行了系统的研究. 结果表明, Pt3Ni(111)表面上CO的吸附弱于Pt(111)表面, O的吸附明显强于Pt(111)表面. 两个表面表现出相似的CO催化氧化活性. 表面Ni的存在不但稳定了O的吸附,同时也降低了过渡态O的能量.  相似文献   

10.
Classical molecular dynamics simulations of the interactions of water with oxidized Pt(111) and Pt/PtCo/Pt(3)Co(111) surfaces are performed by modeling water with the CF1 central force model that allows molecular dissociation and therefore the presence of other intermediates of the oxygen reduction reaction different from atomic oxygen. It is found that the water-surface oxide interactions do not affect the overall structure of the catalyst represented by an extended periodic slab. However, such interactions are affected by changes in the electrochemical potential which are simulated by higher values of the surface and atomic oxygen charges at increased oxygen coverage. Thus, electrochemical potential as well as the presence of protons and anions products of acid dissociation define the identity and the amount of oxygen reduction reaction intermediates such as OH or H(3)O. We observe agglomerations of water molecules over regions of the surface and the presence of OH and H(3)O in their vicinity. Our simulation model is able to qualitatively reproduce features of the degradation of the catalyst surface after oxidation and reduction cycles.  相似文献   

11.
刘金尧 《分子催化》1997,11(1):50-54
Pt(111)表面上一氧化碳的吸附与氧化反应1)刘金尧(清华大学一碳化工国家重点实验室北京100084)XuMZaeraF(DepartmentofChemistryUniversityofCaliforniaRiversideCA92521)关键词...  相似文献   

12.
Electrochemical techniques, coupled with in situ scanning tunneling microscopy, have been used to examine the mechanism of CO oxidation and the role of surface structure in promoting CO oxidation on well-ordered and disordered Pt(111) in aqueous NaOH solutions. Oxidation of CO occurs in two distinct potential regions: the prepeak (0.25-0.70 V) and the main peak (0.70 V and higher). The mechanism of reaction is Langmuir-Hinshelwood in both regions, but the OH adsorption site is different. In the prepeak, CO oxidation occurs through reaction with OH that is strongly adsorbed at defect sites. Adsorption of OH on defects at low potentials has been verified using charge displacement measurements. Not all CO can be oxidized in the prepeak, since the Pt-CO bond strength increases as the CO coverage decreases. Below theta(CO) = 0.2 monolayer, CO is too strongly bound to react with defect-bound OH. Oxidation of CO at low coverage occurs in the main peak through reaction with OH adsorbed on (111) terraces, where the Pt-OH bond is weaker than on defects. The enhanced oxidation of CO in alkaline media is attributed to the higher affinity of the Pt(111) surface for adsorption of OH at low potentials in alkaline media as compared with acidic media.  相似文献   

13.
The adsorption energetics of NO and CO on Pt(111) are studied using an ab initio embedding theory. The Pt(111) surface is modeled as a three-layer, 28-atom cluster with the Pt atoms fixed at bulk lattice sites. Molecular NO is adsorbed at high symmetry sites on Pt(111), with the fcc threefold site energetically more favorable than the hcp threefold and bridge sites. The calculated adsorption energy at the fcc threefold site is 1.90 eV, with an N-surface distance of 1.23 Å. The NO molecular axis is perpendicular to the Pt(111) surface. Tilting the O atom away from the surface normal destablizes adsorbed NO at all adsorption sites considered. On-top Pt adsorption has been ruled out. The Pt(111) potential surface is very flat for CO adsorption, and the diffusion barriers from hcp to fcc sites are 0.03 eV and less than 0.06 eV across the bridge and the atop sites, respectively. Calculated adsorption energies are 1.67, 1.54, 1.51, and 1.60 eV at the fcc threefold, hcp threefold, bridge, and atop sites, respectively. Calculated C-surface distances are 1.24 Å at the fcc threefold site and 1.83 Å at the atop site. It is concluded that NO and CO adsorption energetics and geometries are different on Pt(111).  相似文献   

14.
Surface strain plays a major role in determining the rate limiting step and catalytic activity of platinum for CO oxidation.  相似文献   

15.
We have determined, for the first time, the equilibrium CO coverage of Pt(111) electrodes at room temperature in 0.1 M H(2)SO(4) as a function of the CO partial pressure using CO-stripping cyclic voltammetry. Fourier-transform infrared (FT-IR) spectroscopy was used to confirm qualitatively the coverage values obtained.  相似文献   

16.
Electronic excitation of metal by intense laser pulses stimulates nuclear motions of adsorbates through nonadiabatic coupling, resulting in diffusion and desorption of adsorbates. These processes take place via precursor states: adsorbates whose vibrational modes with respect to substrate are highly excited. This paper reports the dynamics of precursor states of CO on Pt(111) probed by use of infrared-visible sum frequency generation with phase-sensitive detection, which allows us to obtain the second-order nonlinear susceptibility and thus the vibrational response function. Without pump pulses at 400 nm, the inverse Fourier transformation of the vibrational response function reveals a free induction decay of vibrational polarization of C-O stretching created by a short infrared pulse. The free induction decay is perturbed when an intense 400-nm pump pulse following the infrared pulse is irradiated, because diffusion and desorption of CO are induced by the pump pulse. The time evolution of instantaneous C-O stretching frequency retrieved from the perturbed free induction decay shows a redshift followed by a rapid reverse shift when the fluence of pump pulse is high enough to desorb CO. This indicates that the frustrated modes of CO is first substantially excited and then the parallel momentum of CO is converted to the normal one through mutual collisions, leading to substantial excitation of the external stretching mode of CO.  相似文献   

17.
18.
CO adlayers on Pt(111) electrode surfaces are an important electrochemical system and of great relevance to electrocatalysis. The potential‐dependent structure and dynamics of these adlayers are complex and still controversial, especially in the CO pre‐oxidation regime. We here employ in situ high‐speed scanning tunneling microscopy for studying the surface phase behavior in CO‐saturated 0.1 m H2SO4 on the millisecond time scale. At potentials near the onset of CO pre‐oxidation local fluctuations in the (2×2)‐CO adlayer are observed, which increase towards more positive potentials. Above 0.20 V (vs. Ag/AgCl), this leads to an adlayer where COad apparently reside on every top site, but still exhibit a (2×2) superstructure modulation. We interpret this observation as a dynamic effect, caused by a small number of highly mobile point defects in the (2×2)‐CO adlayer. As shown by density functional theory calculations, the CO lattice near such defects relaxes into a local (1×1) arrangement, which can rapidly propagate across the surface. This scenario, where a static (2×2) COad sublattice coexists with a highly dynamic sublattice of partially occupied top sites, explains the pronounced COad surface mobility during electrooxidation.  相似文献   

19.
The excited states of CO adsorbed on the Pt(111) surface are studied using a time-dependent density functional theory formalism. To reduce the computational cost, electronic excitations are computed within a reduced single excitation space. Using cluster models of the surface, excitation energies are computed for CO in the on-top, threefold, and bridge binding sites. On adsorption, there is a lowering of the 5sigma orbital energy. This leads to a large blueshift in the 5sigma- -> pi(CO*) excitation energy for all adsorption sites. The 1pi and 4sigma orbital energies are lowered to a lesser extent, and smaller shifts in the corresponding excitation energies are predicted. For the larger clusters, pi* excitations at lower energies are observed. These transitions correspond to excitations to virtual orbitals of pi* character which lie below the pi* orbitals of gas phase CO. These orbitals are associated predominantly with the metal atoms of the cluster. The excitation energies are also found to be sensitive to changes in the adsorption geometry. The electronic spectrum of CO on Pt(111) is simulated and the assignment of the bands observed in experimental electron energy loss spectroscopy discussed.  相似文献   

20.
Bulk CO oxidation has been studied on platinum stepped surfaces belonging to the series Pt(S)[n(111) × (111)], using a hanging meniscus rotating disk electrode (HMRDE) configuration. The general shape of the voltammograms is not significantly affected by the presence of the steps. However, the curves shift towards negative values as the step density increases. Thus, in the positive-going scan, a linear relationship is observed for the dependence of the potential for the ignition peak vs the step density for surfaces with terraces wider than five atoms, shorter terraces deviate from this behavior. In the negative-going scan, a similar situation is observed for the potential where the current drops to zero. In this case, Pt(111) electrode also deviates from the expected behavior because of the formation of the ordered bisulfate adlayer on the electrode. The anion readsorption process is also observed by recording the HRMDE voltammograms at a high scan rate. All these results have been analyzed in light of a common mechanism, discussing the possible role of the steps in the stability and reactivity of the CO adlayer. In memoriam of Francisco C. Nart, an excellent scientist, colleague, and friend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号