首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method has been described for the direct determination of Ti, Cu, Mn, Cr and Cd in solid biological samples without any chemical pretreatment by fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry (ETV-ICP-AES) with slurry sampling. A polytetrafluorethylene (PTFE) emulsion was used as a fluorinating reagent to promote the vaporization of the analytes from the graphite furnace. The interface between furnace device and ICP torch and the main factors affecting the analytical signal were investigated systematically. The detection limits for the determination of Ti, Cu, Mn, Cr and Cd are 6.3, 4.7, 10, 13 and 278 ng/mL, respectively; the relative standard deviations are in the range of 1.5 (Mn) ∼4.0% (Cd) after optimization of the operating conditions. The recommended approach has been applied to directly determine the trace elements of interest in the Chinese traditional medicine Loulu and in the solid biological standard reference material (peach leaves, GBW 08501) with satisfactory results. Received: 28 December 1998 / Revised: 9 February 1999 / Accepted: 12 February 1999  相似文献   

2.
Slurry sampling followed by electrothermal vaporization (ETV) was used as sample introduction technique in inductively coupled plasma atomic emission spectrometry (ICP-AES) for the direct determination of trace elements in food samples. A polytetrafluoroethylene (PTFE) emulsion was used as a fluorinating reagent to promote vaporization and the transportation of analytes. The main factors affecting the analytical signals were investigated in detail. Under optimum operating conditions, the detection limits (DL) for this method varied from 1.8 (Cu) to 215 ng/mL (Zn), while the relative standard deviations (RSD) were in the range 2.6% (Cu)-7.2% (Zn). The proposed method was successfully applied to the direct determination of trace amounts of V, Cu, Cr, Fe, Zn, and La in rice without any chemical pretreatment. The precision was evaluated by analyzing a standard reference material (tea leaves, GBW 07605) and comparing the results from this method with results obtained by pneumatic nebulization (PN) ICP-AES after the wet-chemical decomposition of the same sample.From Zhurnal Analiticheskoi Khimii, Vol. 60, No. 3, 2005, pp. 286–290.Original English Text Copyright © 2005 by Chen.This article was submitted by the author in English.  相似文献   

3.
A new method for the determination of trace amounts of 14 rare earth elements in high purity Y2O3 using fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry with slurry sampling was developed. A polytetrafluoroethylene (PTFE) emulsion was used as a fluorinating reagent to promote the vaporization of the analytes from graphite furnace. The main factors affecting analytical signals were investigated systematically. The interference of matrix could be minimized in the presence of PTFE. Under optimum conditions, the detection limits for rare earth elements were 0.032 ng~2.52 ng and the relative standard deviations were in the range of 1.4% to 4.3%. The proposed method was applied to the direct analysis of high purity Y2O3 powder with satisfactory results.  相似文献   

4.
5.
A direct inductively coupled plasma atomic emission method for the determination of Ag, Al, As, Ca, Cd, Co, Cu, Fe, Ga, K, Li, Mg, Na and Pb in high-purity tantalum powders has been developed. The electrothermal vaporization technique using a modified longitudinally-heated Grün-ETAAS furnace with sample introduction on a platform and an automated sampling workstation provided the possibility of in situ analyte-matrix separation, freedom of blank, and applicability to routine analysis. Hard- and software were modified to allow signal recording and data processing independent of the spectrometer software. The extent of spectral interferences by Ta-emission at the analyte wavelengths used was determined and the analyte signals of each sample run were automatically corrected. Limits of detection ranging from 5 ng/g (Ag, Cu) to 250 ng/g (K, Pb) were obtained using optimized furnace and spectrometer conditions. The method was applied to the analysis of two tantalum samples and the results for Cu, Fe, K, Mg and Na were compared with those obtained by liquid and solid-samping ETAAS, showing satisfactory agreement.  相似文献   

6.
Possibilities of electrothermal sample vaporization in inductively coupled plasma atomic emission spectrometry (ETV-ICP-AES) in the analysis of high-purity reagents were studied on an example high-purity waters, acid solutions, and trace impurity concentrates. The analytical and background signals in the injection of solutions into inductively coupled plasma (ICP) by pneumatic nebulization and electrothermal vaporization were compared and the of limits of detection in the analysis of high-purity reagents with impurity preconcentration by evaporation were estimated and compared.  相似文献   

7.
Electrothermal vaporization (ETV) inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) with polyvinylidene fluoride (PVDF) as chemical modifier are critically compared for the determination of refractory elements in coal fly ash and airborne particulates. The atmospheric particulates that collected on a PVDF filter were introduced into the graphite furnace in the form of a slurry by dissolving the filter in dimethylformamide, and the dissolved filter PVDF, along with additional added PVDF powder, was used as a chemical modifier for subsequent ETV-ICP-OES and ETV-ICP-MS determination. The vaporization behaviors of analytes (Ti, Zr, V, Mo, Cr, La) in ETV-ICP-OES/MS were studied in detail, and the optimal ETV operating parameters were obtained. Under the optimized operating conditions, the detection limits of target elements were 0.08-2.7 ng m(-3) for ETV-ICP-OES and 0.5-50 pg m(-3) for ETV-ICP-MS, respectively, with analytical precisions of 3.5-7.3% for ETV-ICP-OES and 3.9-9.6% for ETV-ICP-MS, respectively. The tolerable amounts of matrix elements for ETV-ICP-OES are higher than for ETV-ICP-MS. Both ETV-ICP-OES and ETV-ICP-MS were used to directly determine the trace refractory elements in coal fly ash and airborne particulates and the analytical results are comparable.  相似文献   

8.
An atomic emission spectrometric method is described for the determination of trace elements in microvolume samples especially of biological materials. Based upon the arrangement of a commercial electrothermal vaporizer and a 40-MHz inductively coupled plasma, the direct determination of aluminum and silicon in human body fluids such as urine and serum and aluminum in hemodialysis solution is performed. The instrumental system involves vaporizing the sample from a modified graphite electrode followed by atomization and excitation of the vapors in the ICP discharge. Compromise experimental conditions are reported and calibration functions compared. Limits of detection in 5-μl samples were 8 pg Al and 2.5 ng Si, and after preconcentration of Al with a poly(acrylamidoxime) resin, the detection limit was 1 pg Al. Recovery of 5 μg Siml and 10 ng Alml from aqueous and synthetic standards was 80–85% and 96–103%, respectively.  相似文献   

9.
Slurry sampling followed by electrothermal vaporization was used as sample introduction technique for digestion-free analysis of aluminium nitride and aluminium oxide by inductively coupled plasma atomic emission spectrometry. The vaporizer consisted of a tungsten coil in a quartz chamber. Spectral interferences and background emission caused by tungsten ablation from the coil were reduced by coating it with tungsten carbide. Different approaches for background correction techniques were considered. The analytes Ca, Cd, Co, Cr, Cu, Fe, Mg, Ni and Zn were determined simultaneously, whereas Mn and Na were determined in the sequential mode. Calibration was performed using the standard additions method. The accuracy was checked by comparison of the results with those of independent methods. Detection limits between 0.01 (Mg) and 8.5 μg/g (Co) were achieved.  相似文献   

10.
Slurry sampling followed by electrothermal vaporization was used as sample introduction technique for digestion-free analysis of aluminium nitride and aluminium oxide by inductively coupled plasma atomic emission spectrometry. The vaporizer consisted of a tungsten coil in a quartz chamber. Spectral interferences and background emission caused by tungsten ablation from the coil were reduced by coating it with tungsten carbide. Different approaches for background correction techniques were considered. The analytes Ca, Cd, Co, Cr, Cu, Fe, Mg, Ni and Zn were determined simultaneously, whereas Mn and Na were determined in the sequential mode. Calibration was performed using the standard additions method. The accuracy was checked by comparison of the results with those of independent methods. Detection limits between 0.01 (Mg) and 8.5 μg/g (Co) were achieved. Received: 21 September 1998 / Revised: 30 October 1998 / Accepted: 3 November 1998  相似文献   

11.
Electrothermal vaporization (ETV) sample introduction in inductively coupled plasma atomic emission spectrometry suffers from severe matrix effects. In the present study, the differences between wet and dry plasma conditions are studied. In addition, the influence of the sample composition was investigated. An inductively coupled plasma optical emission spectrometer, with detection based on charge transfer, allowed the simultaneous measurement of ionic and atomic emission line intensities during the transient signal. Mg and Cr were the test elements. The ion-to-atom line ratio increases at higher power settings, but the changes were larger when a nebulizer was used for sample introduction than with ETV sample introduction. The decrease of ion-to-atom line ratios at increasing observation height was more pronounced when ETV was used, due to the absence of water vapor. The gas flow rate showed a stronger influence for nebulization than for ETV. In the presence of a calcium matrix, lower ion-to-atom line ratios were observed, but the ratio did not change significantly within the transient emission signal. Similar line ratios were observed for different amounts of calcium matrix. The values of ion-to-atom line ratios for Mg and Cr indicate that the plasma ionization and thermal characteristics are not modified due to the presence of the calcium matrix.  相似文献   

12.
A procedure based on electrothermal evaporation (ETV) and inductively coupled plasma atomic emission spectrometry (ICP-OES) for the determination of trace impurities in Al2O3 powders without any sample pretreatment is presented. With the aid of matrix modifier the transport and the evaporation efficiency for refractory compounds could be increased by forming halides with a lower boiling point. As calibration is still a problem in direct solid sample analysis, different calibration approaches including the use of certified reference materials from NIST and standard addition of aqueous solutions of analytes were discussed. The accuracy obtained with calibration and with the standard addition method was shown up for the elements Ca, Fe, Ga, Mg, Mn, Na, Ni and V for the case of Al2O3 NIST standard reference material (SRM 699). The ETV–ICP-OES method was used for the analysis of Al2O3 powders with impurities in the low μg/g range and the results for the elements Ca, Fe, Ga, Mg, Mn, Na, Ni and V obtained with evaporation of discrete powder amounts with ETV–ICP-OES and slurry evaporation under the use of ultrasonic homogenization during the sampling and ETV–ICP-MS were shown to be in a good agreement.  相似文献   

13.
A novel method for the determination of trace elements in microliter samples using the tantalum filament electrothermal vaporization/low-pressure inductively coupled plasma (ETV/LP-ICP) atomic emission spectrometry has been developed. An improved tantalum filament ETV was directly coupled with LP-ICP system for efficient vaporization of microliter samples and further quantitative analysis. The experimental parameters including ETV current, rf power and mass flow rate of argon carrier gas were optimized using the copper emission signal produced by 5 μl of standard solution (5 μg/ml). Under the optimized condition, the analytical performances including linearity, precision and detection limit for the developed system were investigated. Absolute detection limits in the range of 22–391 pg for selected eight elements (Fe, Cu, Cr, Mn, Pb, K, Zn and Mg) were obtained with satisfactory precision (<8.9% RSD). The feasibility of the developed system has been demonstrated by analyzing wheat gluten NIST standard sample.  相似文献   

14.
Pierre Masson 《Talanta》2007,71(3):1399-1404
The present work demonstrates the capability of electrothermal vaporization (ETV) to become an important tool of solid sample introduction in ICP-AES for plant sample analysis. Direct determination of Al, Ca, Fe, K, Mg, Mn, Na and Zn was investigated in powdered plant samples. Obtaining good results for major elements in plant samples was governed by some special operating conditions. The sensitivity of the method necessitated the use of ICP in radial view configuration. The behavior of elements during vaporization was studied between 500 and 2600 °C. External calibration was carried out using solid external (cellulose) spiked with aqueous standard solutions. However, performances of the analytical method were found dependent of argon flow rates. Analytical accuracy of the method was tested in three reference materials. Analytical results agreed with certified values when cellulose was used in calibration. However, K could not be determined because of excessive sensitivity. Without cellulose, it was found that Fe results were underestimated and Zn results overestimated. Relative standard deviations varied from 3 to 23%. Limits of detection varied from 1 to 80 ng g−1 from one element to the other for a typical mass sample of 2 mg.  相似文献   

15.
本文采用国产部件组装了一套ETV-ICP-AES仪器体系,对装置的连接及操作参数进行优化。深入系统地考察了分析物的蒸发过程和传输过程,提出了难熔元素的蒸发和传输机理。研究了ETV-ICP-AES中基体效应,提出了以聚四氟乙烯为氟化剂,氟化辅助ETV-ICP-AES测定难熔元素的新方法,应用于环境和生物标样中痕量元素分析,获得满意结果。  相似文献   

16.
Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) is a very powerful technique for the direct analysis of solid materials prepared as slurries. The use of isotope dilution USS-ETV-ICP-MS (USS-ETV-ID-ICP-MS) for micro-homogeneity characterization studies of powdered reference materials based on elemental analyses, was investigated. Slurry analysis conditions were optimized taking into consideration density, particle size, analyte extraction, slurry mixing, analyte transport and sampling depth. Slurries were prepared using 1–20 mg of material and adding 1.0 ml of 5% nitric acid diluent containing 0.005% Triton X-100®. Three reference materials were analyzed (RM 8431a Mixed Diet, SRM 1548a Typical Diet and SRM 2709 San Joaquin Soil). Cu and Ni were determined in each material and Fe was also determined in RM 8431a Mixed Diet. ETV conditions were optimized and the benefit of using Pd as a carrier to enhance transport, combined with oxygen ashing was demonstrated. The accuracy of the method was verified by comparing analytical results with certified values. The precision of the method was demonstrated by comparing R.S.D.'s for slurry samples and aqueous standards and elemental ‘homogeneity’ was quantified based on the slurry sampling variability. The representative sample mass analyzed was calculated taking into consideration extraction of analyte into the liquid phase of the slurry. Representative sample masses of approximately 4 mg of RM 8431a provided slurry sampling variabilities of 10% or less for Cu, Fe and Ni. Representative sample masses of approximately 10 mg of SRM 1548a provided slurry sampling variabilities of approximately 10% for Cu and Ni. Representative sample masses of approximately 0.3 mg of SRM 2709 resulted in total analytical variabilities of less than 7%, highlighting the fact that the San Joaquin Soil is clearly the most homogeneous of the materials characterized.  相似文献   

17.
A novel method for inductively coupled plasma atomic emission spectrometry (ICP-AES) determination of trace amounts of Pt(II), Pd(II) and Rh(III), based on gaseous compounds introduction into the plasma as their diethyldithiocarbamate complexes by electrothermal vaporization (ETV), was developed. At the temperature of 1100 °C, the trace amounts of Pt, Pd and Rh were vaporized into plasma. The factors affecting the formation of the chelates and their vaporization behaviors, such as ashing temperature and time, vaporization temperature and time, pH and the concentration of chelating reagents were studied in detail. Under the optimized conditions, the limits of detection (LODs) (3σ) of Pt, Pd and Rh for tested solutions were 5.4, 1.4 and 0.8 ng ml−1, and for actual sample (auto-catalyst NIST SRM 2557) were 0.27, 0.07 and 0.04 μg g−1, respectively. The relative standard deviations (RSDs) for Pt, Pd and Rh were 1.4, 2.6 and 2.4% (CPt=0.5 μg ml−1, CPd,Rh=0.25 μg ml−1, n=7), respectively. The linear ranges of calibration graphs for Pt, Pd and Rh cover three orders of magnitude. Compared with conventional electrothermal vaporization technique, using the reagent of diethyldithiocarbamate as chemical modifier could not only enhance the analytical sensitivities, but also reduce the vaporization temperature. By combination with a separation/preconcentration step, the proposed method had been successfully applied to the analysis of the artificial seawater, tap water and urine with recoveries ranging from 91 to 106%. The two certified reference material meager platinpalladium ore GBW 07293 and auto-catalyst NIST SRM 2557 was also analyzed for validation, and the determined values obtained were in good agreement with the certified values.  相似文献   

18.
A new method for the determination of trace amounts of 14 rare earth elements in high purity Y2O3 using fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry with slurry sampling was developed. A polytetrafluoroethylene (PTFE) emulsion was used as a fluorinating reagent to promote the vaporization of the analytes from graphite furnace. The main factors affecting analytical signals were investigated systematically. The interference of matrix could be minimized in the presence of PTFE. Under optimum conditions, the detection limits for rare earth elements were 0.032 ng∼2.52 ng and the relative standard deviations were in the range of 1.4% to 4.3%. The proposed method was applied to the direct analysis of high purity Y2O3 powder with satisfactory results. Received: 19 June 1999 / Revised: 10 December 1999 / Accepted: 16 December 1999  相似文献   

19.
Summary A commercially available graphite furnace was modified in order to use it as an electrothermal vaporization device for solid sample analysis with an inductively coupled plasma atomic emission spectrometer. An evaluation of two different ETV systems has been made. This paper mainly describes the different aspects which must be taken into account when coupling an ETV system to an ICP. Cu was chosen as an element easy to determine and Cd and Pb as elements with more difficulties. From the optimization it was found that the transport efficiency for Cd in solution and solid is different, whereas for Cu and Pb the efficiencies are in good agreement for both sample types. Calibration with solids and liquids was attempted for Cu. The paper gives preliminary results on the determination of Cu in solid reference materials. In some cases (e.g. Pb) a background correction based on a linear interpolation seemed not satisfactory. Detection limits and limits of determination for Cu, Cd and Pb in different solid samples are given.Presented at the 5th International Colloquium on Solid Sampling with Atomic Spectroscopy, May 18–20, 1992; Geel, Belgium. Papers edited by R. F. M. Herber, Amsterdam  相似文献   

20.
Platform and wall vaporization for electrothermal vaporization (ETV)-inductively coupled plasma mass spectrometry (ICP-MS) determination of some refractory elements (Ti, V, Cr, Mo, La and Zr) and Pb were comparatively studied with the use of poly (tetrafluoroethylene) (PTFE) as fluorinating reagent. The factors affecting the vaporization behaviors of the target analytes in the platform and tube wall vaporization including vaporization temperature and time, pyrolytic temperature and time were studied in detail, and the flow rates of carrier gas/auxiliary carrier gas, were carefully optimized. Under the optimal conditions, the signal profiles, signal intensity, interferences of coexisting ions and analytical reproducibility for wall and platform vaporization ETV-ICP-MS were compared. It was found that both wall and platform vaporization could give very similar detection limits, but the platform vaporization provided higher signal intensity and better precision for some refractory elements and Pb than the wall vaporization. Especially for La, the signal intensity obtained by platform vaporization was 3 times higher than that obtained by wall vaporization. For platform vaporization ETV-ICP-MS, the limits of detection (LODs) of 0.001 μg L−1 (La) ~ 0.09 μg L− 1 (Ti) with the relative standard deviations (RSDs) of 1.5% (Pb) ~ 15.5% (Zr) were obtained. While for wall vaporization ETV-ICP-MS, LODs of 0.005 μg L− 1 (La) ~ 0.4 μg L− 1 (Pb) with RSDs of 3.2% (Mo) ~ 12.8% (Zr) were obtained. Both platform and tube wall vaporization techniques have been used for slurry sampling fluorination assisted ETV-ICP-MS direct determination of Ti, V, Cr, Mo, La, Zr and Pb in certified reference materials of NIES No. 8 vehicle exhaust particulates and GBW07401 soil, and the analytical results obtained are in good agreement with the certified values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号