首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of NiCu-SiO2 catalysts with a metal content of 90% and different Ni/Cu ratios has been investigated in the hydrodeoxygenation of anisole, a model compound of bio-oil, at 280°C and 6 MPa. A homogeneous phase composition of the active component has been synthesized by the co-decomposition of nickel and copper nitrates followed by the introduction of SiO2 as a stabilizer. The resulting catalysts have been characterized by temperature-programmed reduction, X-ray powder diffraction, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy combined with energy-dispersive microanalysis. The bulk and surface composition of active-component particles has been determined by XPS and X-ray diffraction. In all of the catalysts containing 15–85 wt % Ni, there are two types of solid solutions. One has a constant composition, Cu0.95Ni0.05, which is independent of the Ni/Cu ratio in the catalyst; in the other, the nickel stoichiometry increases with an increasing Ni content of the active component. A correlation has been established between the Ni/Cu ratio and the rate constants of the reaction examined and between the Ni/Cu ratio and the degree of hydrodeoxygenation for all samples. The most active catalyst is Ni85Cu5-SiO2.  相似文献   

2.
The effects of plasmochemical processing and of Ce, K, and Hf additives on the rate of dehydrogenation for isopropyl alcohol on a 5 wt % Co/SiO2 catalyst is studied under static and flow conditions. Glow discharge plasma in O2 and Ar and high-frequency electrodeless plasma in H2 (HF-H2) are used. Except for one sample containing Hf, an increase in catalytic activity is observed due to the formation of new active centers. The change in the composition of the initial catalyst’s surface after treatment with Ce and with oxygen, argon, and HF-H2 plasmas is determined by means of X-ray photoelectron spectroscopy. The change in the size and shape of Co particles after treating the catalyst with HF-H2 plasma and Ce is determined via X-ray phase analysis. It is suggested that the new catalytic centers formed after treatment in O2 and Ar plasma contain carbon atoms with C1s bond energies of 282.1 eV; after treatment with HF-H2 plasma, active centers contain hydrogen and carbon atoms with C1s bond energies of 282.5 eV; with cerium, the C1s bond energy is 297.7 eV.  相似文献   

3.
Ni‐based magnetic catalysts exhibit moderate activity, low cost, and magnetic reusability in hydrogenation reactions. However, Ni nanoparticles anchored on magnetic supports commonly suffer from undesirable agglomeration during catalytic reactions due to the relatively weak affinity of the magnetic support for the Ni nanoparticles. A hierarchical yolk–shell Fe@SiO2/Ni catalyst, with an inner movable Fe core and an ultrathin SiO2/Ni shell composed of nanosheets, was synthesized in a self‐templating reduction strategy with a hierarchical yolk–shell Fe3O4@nickel silicate nanocomposite as the precursor. The spatial confinement of highly dispersed Ni nanoparticles with a mean size of 4 nm within ultrathin SiO2 nanosheets with a thickness of 2.6 nm not only prevented their agglomeration during catalytic transformations but also exposed the abundant active Ni sites to reactants. Moreover, the large inner cavities and interlayer spaces between the assembled ultrathin SiO2/Ni nanosheets provided suitable mesoporous channels for diffusion of the reactants towards the active sites. As expected, the Fe@SiO2/Ni catalyst displayed high activity, high stability, and magnetic recoverability for the reduction of nitroaromatic compounds. In particular, the Ni‐based catalyst in the conversion of 4‐nitroamine maintained a rate of over 98 % and preserved the initial yolk–shell structure without any obvious aggregation of Ni nanoparticles after ten catalytic cycles, which confirmed the high structural stability of the Ni‐based catalyst.  相似文献   

4.
Ni‐loaded pure siliceous and aluminosilicate MCM‐41 (Ni/MCM‐41) and nickel‐loaded silica (15Ni/SiO2) were synthesized via wet impregnation and were characterized by various techniques. The H2 consumption in the TPR analysis was found to be proportional to the Ni amount in the calcined samples. After reduction the average Ni particle sizes of 15Ni/MCM‐41 and 15Ni/SiO2 were 9–12 and 16 nm, respectively, by means of XRD and TEM measurements. All catalysts owned weak and intermediate Lewis acid sites that increased slightly with increasing the Ni amount and the Al content. In the liquid phase hydrogenation of t,t,c‐1,5,9‐cyclododecatriene over Ni/MCM‐41, the catalytic activity was parallel to the Ni content and enhanced slightly with the acid amount of the catalysts. Consequently, it was proposed that the Ni metallic sites contributed the major effect to the catalytic activity while the Lewis acid sites promoted a small but significant influence on the catalytic performance. It is noteworthy that all 15Ni/MCM‐41 catalysts exhibited remarkably higher activity than that of the conventional 15Ni/SiO2 catalyst.  相似文献   

5.
The effects of the Pd content (0–1 wt %) and the synthesis method (joint impregnation with Ni + Pd and Pd/Ni or Ni/Pd sequential impregnation) on the physicochemical and catalytic properties of Ni–Pd/CeZrO2/Al2O3 were studied in order to develop an efficient catalyst for the conversion of methane into hydrogen-containing gas. It was shown that variation in the palladium content and a change in the method used for the introduction of an active constituent into the support matrix make it possible to regulate the redox properties of nickel cations but do not affect the size of NiO particles (14.0 ± 0.5 nm) and the phase composition of the catalyst ((γ + δ)-Al2O3, CeZrO2 solid solution, and NiO). It was established that the activity of Ni–Pd catalysts in the reaction of autothermal methane reforming depends on the method of synthesis and increases in the following order: Ni + Pd < Ni/Pd < Pd/Ni. It was found that, as the Pd content of the Ni–Pd/CeZrO2/Al2O3 catalyst was decreased from 1 to 0.05 wt %, the ability for self-activation, high activity, and operational stability of the catalyst under the conditions of autothermal methane reforming remained unaffected: at 850°C, the yield of hydrogen was ~70% at a methane conversion of ~100% during a 24-h reaction.  相似文献   

6.
Cellulose-derived sorbitol is emerging as a feasible and renewable feedstock for the production of value-added chemicals. Highly active and stable catalyst is essential for sorbitol hydrogenolysis. Ordered mesoporous M–xNiyCeAl catalysts with different loadings of nickel and cerium species were successfully synthesized via one-pot evaporation-induced self-assembly strategy (EISA) and their catalytic performance were tested in the hydrogenolysis of sorbitol. The physical chemical properties for the catalysts were characterized by XRD, N2 physisorption, H2-TPR, H2 impulse chemisorption, ICP and TEM techniques. The results showed that the ordered mesopores with uniform pore sizes can be obtained and the Ni nanoparticles around 6 nm in size were homogeneously dispersed in the mesopore channels. A little amount of cerium species introduced would be beneficial to their textural properties resulting in higher Ni dispersion, metal area and smaller size of Ni nanoparticles. The M–10Ni2CeAl catalyst with Ni and Ce loading of 10.9 and 6.3 wt % shows better catalytic performance than other catalysts, and the yield of 1,2-PG and EG can reach 56.9% at 493 K and 6 MPa pressure for 8 h after repeating reactions for 12 times without obvious deterioration of physical and chemical properties. Ordered mesoporous M–NiCeAl catalysts are active and stable in sorbitol hydrogenolysis.  相似文献   

7.
The effect of the treatment of the 5 wt % Cu/SiO2 (I) and (5 wt % Cu + 0.5 wt % Ce)/SiO2 (II) catalysts with glow discharge plasma in O2, H2, and Ar on their structural characteristics was studied by X-ray phase analysis; the influence of cerium additions and plasmochemical treatments on the catalyst activity in isopropanol dehydrogenation was also investigated. Under the plasmochemical treatment, the diameters of Cu particles in catalyst I nearly doubled and microstresses in the metal particles also changed. Catalyst II was X-ray amorphous both before and after plasmochemical treatments. The activity of I after plasmochemical treatment increased because of the increase in the number of centers and changes in their composition. Growth of the activity of I compared with the activity of II was explained by the formation of new catalytic centers due to positive charging of the Ce+?? adatom on the surface of the copper particle.  相似文献   

8.
The reaction of the dehydrogenation of cyclohexane on a copper-platinum catalyst supported by silica gel (1 wt % Pt + 0.15 wt % Cu)/SiO2 was studied. The state of the catalyst surface was investigated using X-ray photoelectron spectroscopy. It was established that under both flow and static conditions, the activity of the copper-platinum catalyst is higher than the activity of a catalyst containing 1 wt % Pt/SiO2. The rise in activity as a result of the introduction of copper, due to a decrease in the activation energy, is explained by an increase in the fraction of carbon in the composition of active centers localized on particles of neutral (Pt m 0) and positively charged (Pt n ) platinum, and by the formation of centers with increased activity as a result of the adsorption of Cu on particles of Pt m 0. It was demonstrated that treating the copper-platinum catalyst with the plasma of a glow discharge in argon and oxygen increases its activity, while treatment in high-frequency H2 plasma reduces it. The indicated changes in the activity are associated with the alteration of the activation energies and the number of active centers, revealed by X-ray photoelectron spectroscopy, that depend on changes in the catalyst surface composition.  相似文献   

9.
The effect of the type of the silica gel pore structure on the surface properties of the Ni-silica gel catalyst precursors for the vegetable oil hydrogenation process has been examined applying N2 sorption and X-ray photoelectron spectroscopy techniques. The nickel catalyst precursors with identical composition (SiO2/Ni = 1.0) has been synthesized by precipitation of Ni(NO3)2 · 6H2O solution with Na2CO3 solution on the three types of silica gel with different pore structures. It is shown that the usage of the silica gel supports with different texture as source of SiO2 causes different location of Ni-species into the support pores and on the external surface area. The XPS data confirm the formation of surface species with different strength of interaction and different dispersion. These surface characteristics of the precursors will predetermine the formation of the active nickel metallic phase as well as the mass transfer of the reactants and products to and from the catalytic sites.  相似文献   

10.
The dependence of the activity of the (Ni 20 wt %-Mn 4 wt %)/SiO2 catalyst on the treatment of its surface in glow-discharge oxygen, argon, and hydrogen plasmas was studied. Catalytic experiments were performed in a flow reactor and under static conditions in a vacuum. The highest activity was observed after catalyst treatment in an argon plasma. Glow-discharge plasma treatment changed the structure and number of active centers, which resulted in a change in the reaction mechanism. Ab initio quantum-chemical calculations were performed using the Hartree-Fock (UHF) method for the Ni5 cluster. The results substantiated the suggested that the active center contained the hydrogen atom.  相似文献   

11.
The influence of plasmochemical treatments of the 5 wt % Cu/SiO2 catalyst and cerium additives on the activity of the catalyst in isopropanol dehydrogenation was studied. After the catalyst was treated with high-frequency plasma in H2 under the flow conditions, the conversion of alcohol increased. The reaction kinetics was studied under static conditions. The rate constant increased 1430-fold after the introduction of an optimum dose of Ce and treatment in Ar, O2, and H2 plasma and 550-fold after treatment with high-frequency plasma in H2. The experimental activation energy increased in all instances; the activity grew because of the increase in the number of active centers. The promoting action of cerium was explained by the positive charge of the Ce adatom, which initiated growth of the surface electron density; the influence of plasmochemical treatments was explained by the change in the number of structural defects and their character. Possible stepwise reaction schemes were considered based on ab initio quantum-chemical calculations.  相似文献   

12.
The effect plasma–chemical treatments of 5 wt % Со/SiO2 catalyst have on its activity in the carbonic acid conversion of methane in the interval of 700 to 900°C is studied. A plasma glow discharge in oxygen and argon was used along with high-frequency plasma in hydrogen for preliminary treatment of the catalyst. A multiple increase in СН4 and СО2 conversion and a 30–50 K drop in the temperature of the onset of the reaction are observed after plasma–chemical treatments. The strongest increase in activity is measured after the catalyst is treated with oxygen plasma. X-ray photoelectron spectroscopy is used to determine the change in the composition of the catalyst’s surface after it is treated with plasma, indicating that active forms of carbon atoms can be included in new active centers.  相似文献   

13.
Summary The activity of co-precipitated NiO-Al2O3 catalyst for partial oxidation of methane in a steel flow reactor was investigated. The catalyst samples loaded with 5, 10 and 20 wt.% nickel before use were thermally treated at 400, 700 and 1100oC. The feed gas for catalytic oxidation was prepared by dilution of natural gas with air, and had approximately the following volume composition: CH4: O2: N2 = 5: 2: 8. The reaction was carried out over 100 mg unreduced NiO-Al2O3 catalyst at gas flow rate of 50 cm3/min at 650oC and atmospheric pressure. The catalyst activity with 5 and 10 wt.% of nickel was very similar, decreasing with enhance of previous heat treatment. Further nickel loading did not increase significantly the catalyst activity compared to low level nickel samples. However, high nickel content has a levelling effect on catalyst activity, suppressing the undesired effect of previous heat treatment at high temperature  相似文献   

14.
The activity and selectivity of the Ni/SiO2 catalyst, as well as the mono- and bimetallic Ni(Cu)—S/SiO2 systems were investigated in the selective hydrogenation of 1,3-pentadiene to pentenes. The presulfiding of the catalysts in a hydrogen sulfide flow substantially increases the selectivity to olefins in gas mixtures with a range of H2/diene molar ratio of 2.5–10. The samples activated in hydrogen at elevated temperatures turned out to be more active. The effect of modification of the nickel—sulfide catalysts with copper, resulting in an increase in the activity and selectivity to olefins, was found. The weight ratio Ni/Cu = 4 was shown to be optimum for achieving the maximum conversion and selectivity on the surface.  相似文献   

15.
Summary The SCR of NO by propane in excess oxygen was studied on a Ni-Al2O3 catalyst prepared by a coprecipitation method. The effect of Ni loading on the catalytic performance was studied and the optimal Ni loading was found to be 4 % (wt.%). Based on characterization results, highly dispersed nickel species in surface aluminate phase was regarded as the active site for NO reduction by C3H8 and NiO phase was the active site for C3H8 oxidation by oxygen.  相似文献   

16.
CO2 is the main component of greenhouse gases and also an important carbon source. The hydrogenation of CO2 to methane using Ni-based catalysts can not only alleviate CO2 emissions but also obtain useful fuels. However, Ni-based catalysts face one major problem of the sintering of Ni nanoparticles in the process of CO2 methanation. Thus, this work has synthesized a series of efficient and robust nickel silicate catalysts (NiPS−X) with different nickel content derived from nickel phyllosilicate by the hydrothermal method. It was found that the Ni loading plays a critical role in the structure and catalytic performance of the NiPS−X catalysts. The catalytic performance gradually increases with the increase of Ni loading. In particular, the highly dispersed NiPS-1.6 catalyst with a high Ni loading of 34.3 wt% could obtain the CO2 conversion greater than 80%, and the methane selectivity was close to 100% for 48 h at 330 °C and the GHSV of 40,000 mL g−1 h−1. The excellent catalytic property can be assigned to the high dispersion of Ni nanoparticles and the strong interaction between the active component and the carrier, which is derived from a unique layered silicate structure with lots of nickel phyllosilicate and a large number of Lewis acid sites.  相似文献   

17.
Alpha-phenylethanol (PE) is an essential chemical in the field of medicine and synthetic perfumery. Therefore, in this work, we used a supported Ni–B–P amorphous alloy catalyst (Ni–B–P/SiO2) in the hydrogenation of acetophenone (AP) to α-PE, which demonstrated excellent catalytic activity and selectivity, compared with Ni–B/SiO2 (KBH4 reduction of nickel salt). Ni–B–P/SiO2 exhibited a high AP hydrogenation conversion of approximately 99%, whereas the PE selectivity reached up to 94%, which is approximately 1.4-fold higher than that of Ni–B/SiO2 (about 69%), thereby directly proving the unique inhibition of AP hydrogenation over hydrogenation of P in the Ni–B catalytic system. The doped P in Ni–B–P/SiO2 enhances the oxidation resistance and maintains the valence stability of Ni and B. Furthermore, sufficient experimental data were collected to determine the kinetic parameters. Based on the Langmuir–Hinshelwood model, we assumed that (i) AP and H2 compete for adsorption on Ni–B–P/SiO2; (ii) AP has strong adsorptive capacity on Ni–B–P/SiO2; and (iii) PE coverage on the catalyst was negligible. Then, the dynamic equation was derived, which indicated that experimental data agree well with the dynamic model. Finally, the activation energy was confirmed to be 50.73 KJ/mol. This report will open up an avenue for the industrialization of amorphous alloy catalysts.  相似文献   

18.
The influence of plasma chemical treatments on the catalytic activity of 0.64 wt % Pt/SiO2 and 1.0 wt % Pt/SiO2 platinum catalysts in the dehydrogenation of cyclohexane was studied. The state of the surface of the catalysts was examined using X-ray photoelectron spectroscopy. Temperature hysteresis caused by the formation of active carbon was observed in flow experiments. It was shown that the reaction on the initial catalysts occurred on neutral and positively charged Pt particles, and that the active centers contained carbon. After catalyst treatment with a high-frequency plasma in H2, its activity increased by many times because of the formation of a large number of low-activity centers on positively charged platinum particles also containing carbon. Glow discharge plasma in Ar sharply decreased catalytic activity, and the reaction then predominantly occurred on centers localized on neutral Pt particles, whereas centers on positive Pt particles were blocked. The state of the substrate (silica gel) did not change under the action of plasmas of both kinds.  相似文献   

19.
The selective oxidation of CO in the presence of hydrogen on CuO/CeO2 systems containing Fe and Ni oxides as promoters was studied. The catalysts containing 1–5 wt % CuO and 1–2.5 wt % Fe2O3 supported on CeO2 and the CuO/CeO2 systems containing 1–2.5 wt % NiO were synthesized, and their catalytic activity as a function of temperature was determined. It was found that the additives of Fe and Ni oxides increased the activity of the CuO/CeO2 catalysts with a low concentration of CuO. In this case, the conversion of CO at 150°C approached 100%. At the same time, these additives had no effect on the activity of the CuO/CeO2 systems at a CuO concentration of 5 wt % or higher, which exhibited an initially high activity in the above temperature region. The forms of CO adsorption and the amounts of active sites for CO adsorption and oxidation were studied using temperature-programmed desorption. It was found that the introduction of Fe and Ni additives in a certain preparation procedure facilitated the formation of an additional amount of active centers associated with CuO. Data on the temperature-programmed reduction of samples (the amount of absorbed hydrogen and the maximum temperature of hydrogen absorption) suggested the interaction of all catalyst components, and the magnitude of this interaction depended on the sample preparation procedure. With the use of Mössbauer spectroscopy, it was found that the procedure of iron oxide introduction into the CuO/CeO2 system was responsible for the electron-ion interactions of catalyst components and the reaction mixture.  相似文献   

20.
镍盐前驱体对Ni/C催化剂乙醇气相羰化活性的影响   总被引:1,自引:0,他引:1  
采用等体积浸渍法制备了分别以乙酰丙酮镍、氯化镍、硝酸镍和醋酸镍为前驱体负载在活性炭上的四种催化剂。用BET、金属分散度、H2-TPR、CO-TPD和XRD等方法研究了四种催化剂的结构特点和乙醇气相羰化活性。结果表明,以醋酸镍制备的Ni/C催化剂的羰化活性最高,乙醇转化率和丙酸选择性分别为96.1%和95.7%,而以乙酰丙酮镍制备的Ni/C催化剂的羰化活性最低,乙醇转化率和丙酸选择性分别为68.9%和27.1%。这种活性的差异与镍盐前驱体和活性炭之间的相互作用强弱有着密切关系。醋酸镍组分与活性炭之间的相互作用较强,浸渍组分易在活性炭表面充分吸附,活性中心Ni0在240-340 ℃温度范围内对CO吸附量最大,还原后金属镍的分散度较好且晶粒较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号