首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
Dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detector (HPLC-VWD) was developed for extraction and determination of chloramphenicol (CAP) and thiamphenicol (THA) in honey. In this extraction method, 1.0 mL of acetonitrile (as dispersive solvent) containing 30 μL 1,1,2,2-tetrachloroethane (as extraction solution) was rapidly injected by syringe into a 5.00-mL water sample containing the analytes, thereby forming a cloudy solution. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by HPLC-VWD. Some important parameters, such as the nature and volume of extraction solvent and dispersive solvent, extraction time, sample solution pH, sample volume and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 3 to 2000 μg kg−1 for target analytes. The enrichment factors for CAP and THA were 68.2 and 87.9, and the limits of detection (S/N = 3) were 0.6 and 0.1 μg kg−1, respectively. The relative standard deviations (RSDs) for the extraction of 10 μg kg−1 of CAP and THA were 4.3% and 6.2% (n = 6). The main advantages of DLLME-HPLC method are simplicity of operation, rapidity, low cost, high enrichment factor, high recovery, good repeatability and extraction solvent volume at microliter level. Honey samples were successfully analyzed using the proposed method.  相似文献   

2.
In recent years the use of monolithic polymers in separation science has greatly increased due to the advantages these materials present over particle-based stationary phases, such as their relative ease of preparation and good permeability. For these reasons, these materials present high potential as stationary phases for the separation and purification of large molecules such as proteins, peptides, nucleic acids and cells. An example of this is the wide range of commercial available polymer-based monolithic columns now present in the market.  相似文献   

3.
This article reviews the most common, useful methods for the chiral determination of amphetamine (AM) and AM-derived designer drugs in different of matrix, including blood, hair, urine, medicaments or standard solutions, taking into consideration articles published in the past 15 years. We consider chromatographic methods (e.g., gas, liquid, high-performance liquid, and thin layer). We describe several types of chiral derivatization reagent, mobile-phase additive and chiral stationary phase commonly used in the chromatographic methods. Tables summarize basic information about conditions (e.g., type of column and mobile phase), detection mode and reference data for each procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号