首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
We provide an extensive review of the common methodologies employed in the analysis of airborne polycyclic aromatic hydrocarbons (PAHs). The review focuses on gas-chromatography-based approaches, in the light of their universal application with excellent separation, resolution, and sensitivity.We first describe collection methods for airborne PAHs in the gas and particle phases. We then evaluate the efficiency of extraction techniques employed for separating target PAHs from sampling media, using conventional solvent-based and emerging thermal-desorption approaches.We also describe commonly employed analytical methods with respect to their applicability to PAHs in gas and particle phases, collected from diverse environmental settings. As an essential part of basic quality assurance, we examine each method with special emphasis on key parameters (e.g., limit of detection and reproducibility).Finally, we address the likely directions of methodological developments, their limitations, and the future prospects for PAH analysis.  相似文献   

2.
This review describes the different steps involved in the determination of arsenic in air, considering the particulate matter (PM) and the gaseous phase. The review focuses on sampling, sample preparation and instrumental analytical techniques for both total arsenic determination and speciation analysis. The origin, concentration and legislation concerning arsenic in ambient air are also considered. The review intends to describe the procedures for sample collection of total suspended particles (TSP) or particles with a certain diameter expressed in microns (e.g. PM10 and PM2.5), or the collection of the gaseous phase containing gaseous arsenic species. Sample digestion of the collecting media for PM is described, indicating proposed and established procedures that use acids or mixtures of acids aided with different heating procedures. The detection techniques are summarized and compared (ICP-MS, ICP-OES and ET-AAS), as well those techniques capable of direct analysis of the solid sample (PIXE, INAA and XRF). The studies about speciation in PM are also discussed, considering the initial works that employed a cold trap in combination with atomic spectroscopy detectors, or the more recent studies based on chromatography (GC or HPLC) combined with atomic or mass detectors (AFS, ICP-MS and MS). Further trends and challenges about determination of As in air are also addressed.  相似文献   

3.
Mercury in aqueous systems can be present in different chemical forms. Of these, dissolved elemental Hg(0) (DEM) is of great importance because it can readily be partitioned between air and water. Analytical methods used for determining DEM are conventionally based on removal of Hg(0) by purging, pre-concentration on gold and detection by either cold vapour atomic absorption (CV-AAS) or atomic fluorescence spectrophotometry (CV-AFS). At present, there is no agreed protocol for the measurement of DEM in aqueous samples. A new method is described here, which is based on continuous stripping of DEM by mercury-free nitrogen in a flow injection mode and detection by CV-AAS. The partitioning of DEM between aqueous and gas phases is largely dependent on the composition of the former. Moreover, calibration using the standard addition method is not possible due to the reactivity of DEM introduced from calibration solutions. Calibration is therefore done by reference measurements using a manual method for DEM involving quantitative removal and CV-AFS detection. DEM is then determined in the water sample by applying the partitioning factor. The optimised method is precise, sensitive and linear over a wide concentration range. It has provided comparable results with the manual method when applied on board a research vessel in the Mediterranean Sea (0.02–0.05 ng L?1) and during a pilot laboratory-scale experiment on industrial aqueous media from wet flue gas desulphurisation (WFGD) equipment (2–300 ng L?1).  相似文献   

4.
A novel and simple microprecipitation method was developed for the preconcentration of ultra-trace quantities of inorganic and methyl mercury species (iHg and MeHg) prior to their determination by cold vapour atomic absorption spectrometry (CVAAS). This method is based on the formation of anionic complexes of Hg2+ with KI followed by ion-associate complex with cetyltrimethyl ammonium bromide (CTAB) that forms a fluffy precipitate in perchloric acid medium. As a result, a fluffy coagulated mass separates and collects at the top of the liquid surface with clear phase separation without need of cooling or heating or centrifugation. The ion-association complex of iHg was then extracted into surfactant-rich phase (top layer) of CTAB-perchlorate precipitate while the uncomplexed MeHg remained in the aqueous phase (bottom layer). This condition also facilitates the removal of aqueous phase by simply draining out. The fluffy mass formed was dissolved in a mixture of HNO3 and HCl which was subsequently treated with chloroform to separate the surfactant from the mixture. Then the aqueous phase containing the preconcentrated iHg was analysed for mercury by CVAAS. Key factors such as sample pH, concentration of KI and CTAB that affect the performance of the proposed microprecipitation method were thoroughly investigated. For the determination of total mercury, another fresh aliquot of water was initially adjusted to pH ~ 3.5 with perchloric acid and subjected to oxidation by using modified UV-irradiation set-up and then taken through the microprecipitation procedure. This method allows speciation of mercury with a preconcentration factor of 200 and the limits of detection (LOD) of mercury obtained for CVAAS in conjunction with the present preconcentration method was found to be 2.4 ng L?1. Average recoveries obtained with the proposed approach were found to be in the range of 96–104% with RSD values < 5%. The interfering effects of various cations and anions were also investigated. The method was successfully applied for the determination of ultra-trace quantities of mercury species in real samples such as bottled water, tap water, lake water and ground waters.  相似文献   

5.
The analytical performance of Pd, Au, Rh, Ir and their mixtures used as chemical modifiers has been investigated for mercury determination by graphite furnace atomic absorption spectrometry. The aim of this work was to evaluate whether chemical modification assures uniform atomization of analyte independent of its chemical form; mercury was used for this study. The investigations were performed for mercury introduced in the form of inorganic Hg(II) or organic PhHg(I). The best conditions, i.e. maximum pyrolysis temperature (450 °C), lowest temperature for atomization (1100 °C), provided almost the same sensitivity for both forms of mercury when a thermally reduced mixed modifier composed of Pd/Rh was used. The accuracy of the selected conditions was evaluated by a recovery test for various natural waters.  相似文献   

6.
A new vapor generation system for mercury (Hg) species based on the irradiation of mercaptoethanol (ME) with UV was developed to provide an effective sample introduction unit for atomic fluorescence spectrometry (AFS). Preliminary investigations of the mechanism of this novel vapor generation system were based on GC–MS and FT–IR studies. Under optimum conditions, the limits of determination for inorganic divalence mercury and methyl mercury were 60 and 50 pg mL−1, respectively. Certified reference materials (BCR 463 tuna fish and BCR 580 estuarine sediment) were used to validate this new method, and the results agreed well with certified values. This new system provides an attractive alternative method of chemical vapor generation (CVG) of mercury species compared to other developed CVG systems (for example, the traditional KBH4/NaOH–acid system). To our knowledge, this is the first systematic report on UV/ME-based Hg species vapor generation and the determination of total and methyl Hg in environmental and biological samples using UV/ME–AFS. Figure A new vapor generation system for mercury species using mercaptoethanol under UV irradiation was developed as an effective sample introduction unit for atomic fluorescence spectrometry  相似文献   

7.
The leakage of sulphur hexafluoride (SF6) gas threats the global climate changes and personnel safety. Monitoring the concentration of SF6 in its application places is an industry regulation. In this study, ion mobility spectrometry (IMS) was developed for fast monitoring traces of SF6 in near-source ambient air. Due to the water is an important part of the natural air and affects most atmospheric measurements, the operating parameters of IMS monitoring SF6 were optimised for quantitative analysis of SF6 at different relative humidity (RH). It is discovered two main product ions SF6? and SOF4? by IMS at different RH. The calibration curves of SF6 were investigated by its relationship with the peak intensity of SOF4 for real application. The time resolution of the measurement was obtained less than 1 s and the limit of detection (LOD) achieved 0.16–0.68 ppm with a data averaging of 30 times. At last, the simulated application of monitoring SF6 leakage was tested in the fume hood of our lab. The results showed a great potential application prospect of IMS in monitoring SF6 in the ambient air of its application places.  相似文献   

8.
A field-adapted procedure based on species-specific isotope dilution (SSID) methodology for trace-level determinations of methyl mercury (CH3Hg+) in mire, fresh and sea water samples was developed, validated and applied in a field study. In the field study, mire water samples were filtered, standardised volumetrically with isotopically enriched CH3200Hg+, and frozen on dry ice. The samples were derivatised in the laboratory without further pre-treatment using sodium tetraethyl borate (NaB(C2H5)4) and the ethylated methyl mercury was purge-trapped on Tenax columns. The analyte was thermo-desorbed onto a GC-ICP-MS system for analysis. Investigations preceding field application of the method showed that when using SSID, for all tested matrices, identical results were obtained between samples that were freeze-preserved or analysed unpreserved. For DOC-rich samples (mire water) additional experiments showed no difference in CH3Hg+ concentration between samples that were derivatised without pre-treatment or after liquid extraction. Extractions of samples for matrix–analyte separation prior to derivatisation are therefore not necessary. No formation of CH3Hg+ was observed during sample storage and treatment when spiking samples with 198Hg2+. Total uncertainty budgets for the field application of the method showed that for analyte concentrations higher than 1.5 pg g–1 (as Hg) the relative expanded uncertainty (REU) was approximately 5% and dominated by the uncertainty in the isotope standard concentration. Below 0.5 pg g–1 (as Hg), the REU was >10% and dominated by variations in the field blank. The uncertainty of the method is sufficiently low to accurately determine CH3Hg+ concentrations at trace levels. The detection limit was determined to be 4 fg g–1 (as Hg) based on replicate analyses of laboratory blanks. The described procedure is reliable, considerably faster and simplified compared to non-SSID methods and thereby very suitable for routine applications of CH3Hg+ speciation analysis in a wide range of water samples.  相似文献   

9.
The sulfhydryl-functionalised core-shell Fe3O4@SiO2 magnetic nanoparticles (Fe3O4@SiO2–RSH MNPs)-based dispersive solid-phase extraction method was developed. The goal of this method is the extraction of mercury species from natural water samples. An interesting aspect of the method is that, thanks to the spontaneously aggregate, the MNPs with a sub-30-nm-size range could be fast and efficiently extracted by 0.45 μm pore size mixed cellulose esters membrane filter. Thus, the elution step can be conducted by passing small amounts eluent through the MNPs on the membrane. It is also found that addition of Ag+ to water sample could improve the elution efficiency, and furthermore, minimises the matrix effects during the extraction of mercury species from natural water samples. The feasibility of the method was studied, and extraction efficiency was evaluated. The results showed that, calculated at 5 ng/L spiked concentration levels, absolute recoveries were 89.4%, 91.9% and 64.2%, and enrichment factors (EFs) were 596, 613 and 428, for inorganic mercury, methylmercury and ethylmercury, respectively. The high EFs were achieved in 5 min of overall extraction time. The method was applied to groundwater and river water samples. The results showed that its suitability for use in fast extracting trace levels of mercury species from natural water samples.  相似文献   

10.
The possibility of adopting deep eutectic solvents (DESs) instead of room temperature ionic liquids (RTILs) in membrane‐free electrochemical gas probes was estimated by first evaluating the performance of ethaline as electrochemical medium. This very easily prepared DES was chosen as prototype since it displays high conductivity and fairly modest viscosity, comparable with those of RTILs usually adopted in electrochemical measurements. Its electrostability window at Au, Pt and GC electrodes was first detected, together with diffusion coefficients displayed in this medium by ferrocene in the range 2.0–26.5 °C, it being adopted as prototype analyte in view of its well known electrochemical behavior and high enough solubility in ethaline. These diffusion coefficients were then used to infer viscosity values of ethaline at all temperatures considered, by exploiting the Stokes‐Einstein equation. Even though ferrocene diffusion coefficients turned out to be remarkably lower than those displayed in usual aprotic solvents, they were fairly higher than those usually found in electrochemical measurements conducted in RTILs, thus pointing out that the use of DESs as solvents adhering to electrode surfaces for assembling electroanalytical gas sensors could be advantageous. On these bases, a conveniently assembled DES‐based probe was tested for the electrochemical detection of low oxygen contents in cooled atmospheres. The quite satisfactory results found indicated that the drawback affecting DESs, consisting in the low values of diffusion coefficients displayed by dissolved analytes, can be overcome by using thin enough DES layers and resorting to a high sensitive detection approach such as amperometry under flow conditions. In fact, good sensitivities were found at all temperatures considered (2.0–26.5 °C), accompanied by a low detection limit (ca. 0.1 % v/v).  相似文献   

11.
The estimation of uncertainty in organic elemental analysis for C, H, N and S is reported. Both “bottom up” and “top down” strategies are used for uncertainty calculations. The bottom up approach used the results of C, H, N, and S obtained from the homogeneity study of two pure chemicals (toluene-4-sulfonamide and 4(6)-methyl-2-thiouracil). Two calibration systems, K factor and calibration curve, were applied in this study and no significant differences were obtained. For the “top down” approach, we used the data obtained from a proficiency test on both pure chemicals from among 45 Spanish laboratories. Both approaches are compared and discussed below.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号