首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Introduction Matrixmetalloproteinases(MMPs)areafamilyof calciumandzincrequiringendoproteinasesthattogether candegradeallthemaincomponentsoftheextra cellu larmatrixandbasementmembranes[1].MMPsarein volvedinawiderangeofproteolyticevents,innormal andpatholog…  相似文献   

2.
余方志  章大鹏  袁征  赵强  汪海林 《色谱》2020,38(10):1133-1142
蛋白质-DNA的相互作用在决定细胞命运的许多过程中发挥重要作用,对蛋白质-DNA相互作用的分子机制研究有利于对基本生命过程的理解,为相关疾病的临床治疗及药物筛选提供理论指导。另一方面,利用一些已知的蛋白质-DNA相互作用可以帮助开发先进的生物工程和生命分析技术,为相关研究提供有力的技术支持。因此,建立灵敏、快速的分析方法用于表征蛋白质-DNA的相互作用十分重要。高效毛细管电泳(capillary electrophoresis,CE)技术因其超高的分离效率、极低的样品消耗与较短的分析时间等优势被广泛应用于化学、生命科学和环境科学等多个研究领域。其中,亲和毛细管电泳(affinity capillary electrophoresis,ACE)技术已经成为考察分子间相互作用的重要研究工具。这篇文章综述了亲和毛细管电泳技术自建立以来在蛋白质-DNA相互作用分析方面的研究进展,并对经典的研究工作进行了着重介绍,主要包括三方面的内容:(1)亲和毛细管电泳技术简介;(2)利用亲和毛细管电泳技术进行蛋白质-DNA相互作用的基础分子机制研究;(3)利用已知的蛋白质-DNA相互作用发展针对目标分子及目标反应的亲和毛细管电泳检测技术。本文还对该领域的未来发展趋势进行了展望与探讨,提出应从以下两个方面增强亲和毛细管电泳技术的分析能力:(1)充分发挥CE技术样品消耗少和高通量等优势,分别发展针对少量珍贵生物样品的高灵敏检测方法和针对大量未知因素的高通量筛选方法;(2)结合DNA测序及质谱技术快速筛选、鉴定未知的蛋白质-DNA相互作用的精确靶点。  相似文献   

3.
Matrix metalloproteinases (MMPs) are a pivotal family of zinc enzymes responsible for degradation of the extracellular matrix (ECM) components including basement membrane collagen, interstitial collagen, fibronectin, and various proteoglycans, during normal remodeling and repair processes. The potent proteolytic activities of MMPs is mainly regulated by the balance with specific tissue inhibitors of Matrix metalloproteinases (TIMP). Excessive or inappropriate expression of MMP may contribute to the pathogenesis of tissue destructive processes in a wide variety of diseases including lung diseases. Although the precise mechanisms are still unknown, the contribution of individual MMPs are worth investigating in seeking the pathogenesis of various lung diseases such as lung cancer, bronchial asthma, chronic obstructive pulmonary disease, acute lung injury, pulmonary hypertension and interstitial lung diseases. In particular, the close association of each lung disease with the destructive effects of gelatinase A and B (also called MMP-2 and MMP-9) on the basement membrane in early alveolar remodeling, and that of collagenase-1 (MMP-1) on the major interstitial structural protein of ECM have received considerable attention. The interaction of MMPs with chemical mediators and inflammatory cytokines has also been reported in some recent studies. Several promising therapeutic approaches to inhibit MMPs have just started in the field of oncology, while more specific MMP inhibitors may be required for further investigation in other fields of lung diseases. In this review, the main focus is on the recent clinical and experimental findings and the contributions of MMPs and/or TIMPs in the lung diseases.  相似文献   

4.
Nitrates are a group of compounds widely distributed in the natural environment with many applications in various industries. Due to their ambiguous impact on the human body and suspicions of their carcinogenic activity, they have been very popular for decades and are the subject of research by many scientists in the field of medicine, biology and chemistry. Due to the need to monitor their content in environmental and food samples, various methods for their determination are developed. This paper proposes the use of a nitrate ion‐sensitive ion selective electrode with a membrane containing as the active ingredient a new cobalt(II) complex with 4,7‐diphenyl‐1,10‐phenanthroline (Bphen) of the formula Co(Bphen)2(NO3)2(H2O)2. The obtained sensor showed the theoretical slope of the characteristic curve, a wide measuring range, as well as short response time and very good potential stability. It was successfully used for the determination of nitrates in real samples: in mineral water, tap water and river water from eastern Poland.  相似文献   

5.
Matrix metalloproteinases (MMPs) are a family of Zn-dependent endo-peptidases known for their ability to cleave several components of the extracellular matrix, but which can also cleave many non-matrix proteins. There are many evidences that MMPs are involved in physiological and pathological processes, and a huge effort has been put in the development of possible inhibitors that could reduce the activity of MMPs, as it is clear that the ability to monitor and control such activity plays a pivotal role in the search for potential drugs aimed at finding a cure for several diseases such as pulmonary emphysema, rheumatoid arthritis, fibrotic disorders and cancer.A powerful method currently available to study enzyme-inhibitor interactions is based on the use of the surface plasmon resonance (SPR) technique. When MMP interactions are studied, a procedure by which inhibitors are normally anchored on sensor chips and SPR technique is used in order to study their interaction with MMPs molecules is usually followed. This is because it is currently believed that MMPs cannot be anchored on the sensor-chip surface without losing their activity. However, this approach gives rise to problems, as the anchoring of low-molecular-weight inhibitors on gold surfaces easily affects their ability to interact with MMPs. For this reason, the anchoring of MMPs is highly desirable.A new experimental protocol that couples the Fourier transform-SPR (FT-SPR) technique with electrospray ionization-mass spectroscopy (ESI-MS) is described here for the evaluation of the activity of MMP-1 catalytic domain (cdMMP-1) anchored on gold surfaces. The cdMMP-1 surface coverage is calculated by using FT-SPR and the enzyme activity is estimated by ESI-MS. The proposed method is label-free.  相似文献   

6.
Introduction Matrixmetalloproteinases(MMPs)areaclassof zinc requiringextracellularendopeptidasesthatcanto getherdegradeallcomponentsoftheextracellularma trixandbasementmembranes[1—3].Theyplayimpor tantrolesinconnectivetissueremodeling,occurringin normalb…  相似文献   

7.
曹雨虹  张明勇  刘敏  洪战英 《色谱》2019,37(3):265-273
神经递质(NTs)是神经传递的内源性化学信使,在大脑功能中发挥重要作用。中枢神经系统中神经递质浓度的变化与许多精神和生理疾病有关。神经递质的测定已成为疾病诊断和监测以及治疗干预的重要手段,有效的神经递质体内监测对于疾病诊疗乃至新药研发都至关重要。该文就近年来神经递质的检测方法,包括仪器检测法、电化学检测法以及一些新型检测方法等进行综述,并总结了目前神经递质检测在一些疾病研究中的应用进展。  相似文献   

8.
In the last 10 years, mesenchymal stem cells (MSCs) have emerged as a therapeutic approach to regenerative medicine, cancer, autoimmune diseases, and many more due to their potential to differentiate into various tissues, to repair damaged tissues and organs, and also for their immunomodulatory properties. Findings in vitro and in vivo have demonstrated immune regulatory function of MSCs and have facilitated their application in clinical trials, such as those of autoimmune diseases and chronic inflammatory diseases. There has been an increasing interest in the role of MSCs in allogeneic hematopoietic stem cell transplantation (HSCT), including hematopoietic stem cell engraftment and the prevention and treatment of graft-versus-host disease (GVHD), and their therapeutic potential has been reported in numerous clinical trials. Although the safety of clinical application of MSCs is established, further modifications to improve their efficacy are required. In this review, we summarize advances in the potential use of MSCs in HSCT. In addition, we discuss their use in clinical trials of the treatment of GVHD following HSCT, the immunomodulatory capacity of MSCs, and their regenerative and therapeutic potential in the field of HSCT.  相似文献   

9.
Plant-parasitic nematodes (PPNs) constitute the most damaging group of plant pathogens. Plant infections by root-knot nematodes (RKNs) alone could cause approximately 5% of global crop loss. Conventionally, chemical-based methods are used to control PPNs at the expense of the environment and human health. Accordingly, the development of eco-friendly and safer methods has been urged to supplement or replace chemical-based methods for the control of RKNs. Using microorganisms or their metabolites as biological control agents (BCAs) is a promising approach to controlling RKNs. Among the metabolites, volatile organic compounds (VOCs) have gained increasing attention because of their potential in the control of not only RKNs but also other plant pathogens, such as insects, fungi, and bacteria. This review discusses the biology of RKNs as well as the status of various control strategies. The discovery of VOCs emitted by bacteria from various environmental sources and their application potential as BCAs in controlling RKNs are specifically addressed.  相似文献   

10.
Salmonella Enteritidis and Salmonella Typhimurium are the most widespread causes of salmonellosis and gastrointestinal diseases worldwide. Thus, their simple and sensitive detection is significantly important in biosafety and point-of-care diagnostics. In that regard, although present nucleic acid-based attempts are mainly focused on the detection methods encompassing all Salmonella enterica members in a single reaction, serotypes other than S. Enteritidis and S. Typhimurium are clinically and epidemiologically rare to humans. Therefore, regarding high ribosomal RNA (rRNA) copy numbers in a cell, isothermal nucleic acid sequence-based amplification (NASBA) technique was employed for simple, sensitive and simultaneous detection of the bacteria. However, due to high sequence homology among 16S rRNA genes and consequently, very few specific regions, we developed a novel NASBA method called “single specific primer-NASBA or SSP-NASBA” in which the specificity of the antisense primer is sufficient to perform a specific NASBA reaction. Accordingly, we designed highly specific NASBA antisense and degenerate sense primers for a segment of 16S rRNA variable region by universal sequence alignment to simultaneously detect S. Enteritidis and S. Typhimurium. Meanwhile, the approach was successfully evaluated for various Salmonella as well as closely related non-Salmonella serovars. Specific and simultaneous detection of both bacteria was achieved with the designed primer set in a single reaction environment with a detection limit of less than 10 CFUs mL−1. The developed NASBA assay should facilitate the overall process and provide a simple, fast, specific and sensitive approach for molecular diagnostics of pathogens under various circumstances, e.g. outbreaks.  相似文献   

11.
Scattering techniques represent non-invasive experimental approaches and powerful tools for the investigation of structure and conformation of biomaterial systems in a wide range of distances, ranging from the nanometric to micrometric scale. More specifically, small-angle X-rays and neutron scattering and light scattering techniques represent well-established experimental techniques for the investigation of the structural properties of biomaterials and, through the use of suitable models, they allow to study and mimic various biological systems under physiologically relevant conditions. They provide the ensemble averaged (and then statistically relevant) information under in situ and operando conditions, and represent useful tools complementary to the various traditional imaging techniques that, on the contrary, reveal more local structural information. Together with the classical structure characterization approaches, we introduce the basic concepts that make it possible to examine inter-particles interactions, and to study the growth processes and conformational changes in nanostructures, which have become increasingly relevant for an accurate understanding and prediction of various mechanisms in the fields of biotechnology and nanotechnology. The upgrade of the various scattering techniques, such as the contrast variation or time resolved experiments, offers unique opportunities to study the nano- and mesoscopic structure and their evolution with time in a way not accessible by other techniques. For this reason, highly performant instruments are installed at most of the facility research centers worldwide. These new insights allow to largely ameliorate the control of (chemico-physical and biologic) processes of complex (bio-)materials at the molecular length scales, and open a full potential for the development and engineering of a variety of nano-scale biomaterials for advanced applications.  相似文献   

12.
There have been many new imaging techniques being developed for the assessment of the various organs and their diseases. In the near future, magnetic resource imaging (MRI) will become one of the most important modalities in the evaluation of the disease processes, while computer tomography (CT), nuclear medicine, ultrasonography and other diagnostic techniques may become complementary to MRI. In any event the new techniques under development will be refined to non-invasive, less costly, easy to perform methods with higher diagnostic accuracy. In the next 10 years, these new modalities will be used more widely in clinical imaging.  相似文献   

13.
Rumex confertus belongs to the genus Rumex and is classified as an invasive parasitic plant in agriculture. Despite other Rumex species being widely used in herbal medicine due to their antimicrobial, antioxidant, antitumor, and anti-inflammatory effects, there are almost no information about the potential of Rumex confertus for the treatment of various diseases. In this review we analyzed scientific articles revealing properties of Rumex plant’s substances against cancer, diabetes, pathogenic bacterial invasions, viruses, inflammation, and oxidative stress for the past 20 years. Compounds dominating in each composition of solvents for extraction were discussed, and common thin layer chromatography(TLC) and high performance liquid chromatography(HPLC) methods for efficient separation of the plant’s extract are included. Physico-chemical properties such as solubility, hydrophobicity (Log P), pKa of flavonoids, anthraquinones, and other derivatives are very important for modeling of pharmacokinetic and pharmacodynamics. An overview of clinical studies for abounded selected substances of Rumex species is presented.  相似文献   

14.
15.
Inflammaging is a term used to describe the tight relationship between low-grade chronic inflammation and aging that occurs during physiological aging in the absence of evident infection. This condition has been linked to a broad spectrum of age-related disorders in various organs including the brain. Inflammaging represents a highly significant risk factor for the development and progression of age-related conditions, including neurodegenerative diseases which are characterized by the progressive dysfunction and degeneration of neurons in the brain and peripheral nervous system. Curcumin is a widely studied polyphenol isolated from Curcuma longa with a variety of pharmacologic properties. It is well-known for its healing properties and has been extensively used in Asian medicine to treat a variety of illness conditions. The number of studies that suggest beneficial effects of curcumin on brain pathologies and age-related diseases is increasing. Curcumin is able to inhibit the formation of reactive-oxygen species and other pro-inflammatory mediators that are believed to play a pivotal role in many age-related diseases. Curcumin has been recently proposed as a potential useful remedy against neurodegenerative disorders and brain ageing. In light of this, our current review aims to discuss the potential positive effects of Curcumin on the possibility to control inflammaging emphasizing the possible modulation of inflammaging processes in neurodegenerative diseases.  相似文献   

16.
The ultrasensitive detection of microRNAs (miRNAs) is currently pursued for the diagnosis of diseases. Due to its outstanding sensitivity, electrochemiluminescence (ECL) is expected to be very effective toward the above goal. In this short review, bioanalytical strategies currently employed in ECL detections of miRNAs are summarized. ECL sensors based on electrochemiluminescent resonance energy transfer (ERET), hybridization chain reaction (HCR), strand displacement reaction (SDR), and other strategies, have an extremely low detection limit of 10?18 M miRNA. In particular, the establishment of miniaturized ECL sensors has shown great potential for point-of-need testing of diseases.  相似文献   

17.
Peptides modified with fluoroalkyl functions in key backbone positions have been scarcely studied so far. Thus, little is known about their synthesis, their structural and physico-chemical properties, and their biological features. Our interest in this field of research led to the development of stereocontrolled synthetic protocols, both in solution and in solid phase, for many different fluoroalkyl peptidomimetics, some of which are overviewed in this paper: (a) ψ[CH(CF3)NH]-peptide mimics holding a great potential as hybrids between natural peptides and hydrolytic transition state analogs; (b) trifluoromethyl (Tfm) malic peptidomimetics as micromolar inhibitors of some matrix metalloproteinases; (c) bis-Tfm analogs of Pepstatin A, that are nanomolar and selective inhibitors of the protozoal aspartyl protease Plasmepsin II.  相似文献   

18.
易高圯  纪柏安  夏之宁  付琦峰 《色谱》2020,38(9):1057-1068
毛细管电泳(CE)具有分离时间短、分离效率高、样品消耗量低等优点,在分离分析领域有着重要应用。原始的未修饰熔融石英毛细管只能提供阴极流向的电渗流和单一的电泳分离机制,分离性能有限,重复性较差,不能满足各类复杂样品体系尤其是中性和手性样品的分离需求。因此,有必要在CE中引入各类毛细管修饰策略,以拓展其实际应用潜力。贻贝仿生聚多巴胺(PDA)及其衍生材料因其简便易行的制备过程、优异的表面黏附性、良好的生物相容性、较强的二次反应活性和化学稳定性等优点,在催化、传感、水处理、样品前处理、生物医药以及CE分离等领域得到了广泛应用。PDA涂层的制备过程与物理吸附涂层一样简便,而表面黏附涂层的稳定性又可与共价键合涂层相媲美,因此非常适用于石英毛细管柱的修饰。更重要的是,PDA涂层较强的二次反应活性使其可作为反应平台进行灵活多样的二次表面修饰,便于构建多功能PDA涂层毛细管电色谱(CEC)固定相。基于这些突出优点,PDA涂层材料在CEC中的巨大应用价值逐渐得到了研究者们的广泛关注。该文首先对近3年有关PDA形成机理及PDA快速沉积表面化学的最新研究进展进行了总结,在此基础上综述了近10年PDA涂层材料在开管毛细管电色谱(OT-CEC)和毛细管电色谱整体柱中的最新应用。此外,还对PDA涂层材料在CEC中的发展方向进行了展望。  相似文献   

19.
To explore the pathogenic mechanisms of MicroRNA (miRNA) on diverse diseases, many researchers have concentrated on discovering the potential associations between miRNA and disease using machine learning methods. However, the prediction accuracy of supervised machine learning methods is limited by lacking of experimentally-validated uncorrelated miRNA-disease pairs. Without these negative samples, training a highly accurate model is much more difficult. Different from traditional miRNA-disease prediction models using randomly selected unknown samples as negative training samples, we propose an ensemble learning framework to solve this positive-unlabeled (PU) learning problem. The framework incorporates two steps, i.e., a novel semi-supervised Kmeans (SS-Kmeans) to extract reliable negative samples from unknown miRNA-disease pairs and subagging method to generate diverse training sample sets to make full use of those reliable negative samples for ensemble learning. Combined with effective random vector functional link (RVFL) network as prediction model, the proposed framework showed superior prediction accuracy comparing with other popular approaches. A case study on lung and gastric neoplasms further confirms the framework’s efficacy at identifying miRNA disease associations.  相似文献   

20.
The electrochemical oxygen evolution reaction (OER) has aroused tremendous attention because it involves some significant energy conversion and storage processes at key elementary stages. Actually, the genesis of structural changes in electrochemical catalysts during the reaction process is often actively influenced by both intrinsic factors and various environmental fields. In this short review, we summarized the latest advances in the structural self-reconstruction of OER electrocatalysts, with a focus on the strategies in rationally driving reconstruction as well as the in situ capturing process, through the combination of synchrotron radiation–based multitechniques. Moreover, extensive efforts are encouraged to precisely manipulate the OER catalyst's self-optimization process, with capability to accelerate their high potential for various practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号