首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equistable graphs are graphs admitting positive weights on vertices such that a subset of vertices is a maximal stable set if and only if it is of total weight 1. Strongly equistable graphs are graphs such that for every and every nonempty subset T of vertices that is not a maximal stable set, there exist positive vertex weights assigning weight 1 to every maximal stable set such that the total weight of T does not equal c . General partition graphs are the intersection graphs of set systems over a finite ground set U such that every maximal stable set of the graph corresponds to a partition of U . General partition graphs are exactly the graphs every edge of which is contained in a strong clique. In 1994, Mahadev, Peled, and Sun proved that every strongly equistable graph is equistable, and conjectured that the converse holds as well. In 2009, Orlin proved that every general partition graph is equistable, and conjectured that the converse holds as well. Orlin's conjecture, if true, would imply the conjecture due to Mahadev, Peled, and Sun. An “intermediate” conjecture, posed by Miklavi? and Milani? in 2011, states that every equistable graph has a strong clique. The above conjectures have been verified for several graph classes. We introduce the notion of equistarable graphs and based on it construct counterexamples to all three conjectures within the class of complements of line graphs of triangle‐free graphs. We also show that not all strongly equistable graphs are general partition.  相似文献   

2.
《Discrete Mathematics》2023,346(1):113178
If each minimal dominating set in a graph is a minimum dominating set, then the graph is called well-dominated. Since the seminal paper on well-dominated graphs appeared in 1988, the structure of well-dominated graphs from several restricted classes has been studied. In this paper we give a complete characterization of nontrivial direct products that are well-dominated. We prove that if a strong product is well-dominated, then both of its factors are well-dominated. When one of the factors of a strong product is a complete graph, the other factor being well-dominated is also a sufficient condition for the product to be well-dominated. Our main result gives a complete characterization of well-dominated Cartesian products in which at least one of the factors is a complete graph. In addition, we conjecture that this result is actually a complete characterization of the class of nontrivial, well-dominated Cartesian products.  相似文献   

3.
Some graphs admit drawings in the Euclidean plane (k-space) in such a (natural) way, that edges are represented as line segments of unit length. We say that they have the unit distance property.The influence of graph operations on the unit distance property is discussed. It is proved that the Cartesian product preserves the unit distance property in the Euclidean plane, while graph union, join, tensor product, strong product, lexicographic product and corona do not. It is proved that the Cartesian product preserves the unit distance property also in higher dimensions.  相似文献   

4.
A graph is well-covered if every independent set can be extended to a maximum independent set. We show that it is co-NP-complete to determine whether an arbitrary graph is well-covered, even when restricted to the family of circulant graphs. Despite the intractability of characterizing the complete set of well-covered circulant graphs, we apply the theory of independence polynomials to show that several families of circulants are indeed well-covered. Since the lexicographic product of two well-covered circulants is also a well-covered circulant, our partial characterization theorems enable us to generate infinitely many families of well-covered circulants previously unknown in the literature.  相似文献   

5.
《Discrete Mathematics》2020,343(7):111904
An even cycle decomposition of a graph is a partition of its edges into cycles of even length. In 2012, Markström conjectured that the line graph of every 2-connected cubic graph has an even cycle decomposition and proved this conjecture for cubic graphs with oddness at most 2. However, for 2-connected cubic graphs with oddness 2, Markström only considered these graphs with a chordless 2-factor. (A chordless 2-factor of a graph is a 2-factor consisting of only induced cycles.) In this paper, we first construct an infinite family of 2-connected cubic graphs with oddness 2 and without chordless 2-factors. We then give a complete proof of Markström’s result and further prove this conjecture for cubic graphs with oddness 4.  相似文献   

6.
《Discrete Mathematics》2023,346(1):113162
The graph coloring game is a two-player game in which the two players properly color an uncolored vertex of G alternately. The first player wins the game if all vertices of G are colored, and the second wins otherwise. The game chromatic number of a graph G is the minimum integer k such that the first player has a winning strategy for the graph coloring game on G with k colors. There is a lot of literature on the game chromatic number of graph products, e.g., the Cartesian product and the lexicographic product. In this paper, we investigate the game chromatic number of the strong product of graphs, which is one of major graph products. In particular, we completely determine the game chromatic number of the strong product of a double star and a complete graph. Moreover, we estimate the game chromatic number of some King's graphs, which are the strong products of two paths.  相似文献   

7.
We prove that under appropriate assumptions adding or removing an infinite amount of edges to a given planar graph preserves its non-hyperbolicity, a result which is shown to be false in general. In particular, we make a conjecture that every tessellation graph of ?2 with convex tiles is non-hyperbolic; it is shown that in order to prove this conjecture it suffices to consider tessellation graphs of ?2 such that every tile is a triangle and a partial answer to this question is given. A weaker version of this conjecture stating that every tessellation graph of ?2 with rectangular tiles is non-hyperbolic is given and partially answered. If this conjecture were true, many tessellation graphs of ?2 with tiles which are parallelograms would be non-hyperbolic.  相似文献   

8.
广义图K(n,m)的全色数   总被引:1,自引:0,他引:1  
1965年,M.Behzad和Vizing分别提出了著名的全着色猜想:即对于简单图G有:XT(G)≤△+2,其中△是图G的最大度.本文确定了完全图Kn的广义图K(n,m)的全色数,并利用它证明了Lm×Kn(m≥3)是第Ⅰ型的.  相似文献   

9.
It is an old problem in graph theory to test whether a graph contains a chordless cycle of length greater than three (hole) with a specific parity (even, odd). Studying the structure of graphs without odd holes has obvious implications for Berge's strong perfect graph conjecture that states that a graph G is perfect if and only if neither G nor its complement contain an odd hole. Markossian, Gasparian, and Reed have proven that if neither G nor its complement contain an even hole, then G is β‐perfect. In this article, we extend the problem of testing whether G(V, E) contains a hole of a given parity to the case where each edge of G has a label odd or even. A subset of E is odd (resp. even) if it contains an odd (resp. even) number of odd edges. Graphs for which there exists a signing (i.e., a partition of E into odd and even edges) that makes every triangle odd and every hole even are called even‐signable. Graphs that can be signed so that every triangle is odd and every triangle is odd and every hole is odd are called odd‐signable. We derive from a theorem due to Truemper co‐NP characterizations of even‐signable and odd‐signable graphs. A graph is strongly even‐signable if it can be signed so that every cycle of length ≥ 4 with at most one chord is even and every triangle is odd. Clearly a strongly even‐signable graph is even‐signable as well. Graphs that can be signed so that cycles of length four with one chord are even and all other cycles with at most one chord are odd are called strongly odd‐signable. Every strongly odd‐signable graph is odd‐signable. We give co‐NP characterizations for both strongly even‐signable and strongly odd‐signable graphs. A cap is a hole together with a node, which is adjacent to exactly two adjacent nodes on the hole. We derive a decomposition theorem for graphs that contain no cap as induced subgraph (cap‐free graphs). Our theorem is analogous to the decomposition theorem of Burlet and Fonlupt for Meyniel graphs, a well‐studied subclass of cap‐free graphs. If a graph is strongly even‐signable or strongly odd‐signable, then it is cap‐free. In fact, strongly even‐signable graphs are those cap‐free graphs that are even‐signable. From our decomposition theorem, we derive decomposition results for strongly odd‐signable and strongly even‐signable graphs. These results lead to polynomial recognition algorithms for testing whether a graph belongs to one of these classes. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 289–308, 1999  相似文献   

10.
The concept of a k-pairable graph was introduced by Z. Chen [On k-pairable graphs, Discrete Mathematics 287 (2004), 11-15] as an extension of hypercubes and graphs with an antipodal isomorphism. In the present paper we generalize further this concept of a k-pairable graph to the concept of a semi-pairable graph. We prove that a graph is semi-pairable if and only if its prime factor decomposition contains a semi-pairable prime factor or some repeated prime factors. We also introduce a special class of k-pairable graphs which are called uniquely k-pairable graphs. We show that a graph is uniquely pairable if and only if its prime factor decomposition has at least one pairable prime factor, each prime factor is either uniquely pairable or not semi-pairable, and all prime factors which are not semi-pairable are pairwise non-isomorphic. As a corollary we give a characterization of uniquely pairable Cartesian product graphs.  相似文献   

11.
Zhu [X. Zhu, Circular-perfect graphs, J. Graph Theory 48 (2005) 186-209] introduced circular-perfect graphs as a superclass of the well-known perfect graphs and as an important χ-bound class of graphs with the smallest non-trivial χ-binding function χ(G)≤ω(G)+1. Perfect graphs have been recently characterized as those graphs without odd holes and odd antiholes as induced subgraphs [M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Ann. Math. (in press)]; in particular, perfect graphs are closed under complementation [L. Lovász, Normal hypergraphs and the weak perfect graph conjecture, Discrete Math. 2 (1972) 253-267]. To the contrary, circular-perfect graphs are not closed under complementation and the list of forbidden subgraphs is unknown.We study strongly circular-perfect graphs: a circular-perfect graph is strongly circular-perfect if its complement is circular-perfect as well. This subclass entails perfect graphs, odd holes, and odd antiholes. As the main result, we fully characterize the triangle-free strongly circular-perfect graphs, and prove that, for this graph class, both the stable set problem and the recognition problem can be solved in polynomial time.Moreover, we address the characterization of strongly circular-perfect graphs by means of forbidden subgraphs. Results from [A. Pêcher, A. Wagler, On classes of minimal circular-imperfect graphs, Discrete Math. (in press)] suggest that formulating a corresponding conjecture for circular-perfect graphs is difficult; it is even unknown which triangle-free graphs are minimal circular-imperfect. We present the complete list of all triangle-free minimal not strongly circular-perfect graphs.  相似文献   

12.
A graph is called claw-free if it contains no induced subgraph isomorphic to K1,3. Matthews and Sumner proved that a 2-connected claw-free graph G is Hamiltonian if every vertex of it has degree at least (|V(G)|-2)/3. At the workshop C&C (Novy Smokovec, 1993), Broersma conjectured the degree condition of this result can be restricted only to end-vertices of induced copies of N (the graph obtained from a triangle by adding three disjoint pendant edges). Fujisawa and Yamashita showed that the degree condition of Matthews and Sumner can be restricted only to end-vertices of induced copies of Z1 (the graph obtained from a triangle by adding one pendant edge). Our main result in this paper is a characterization of all graphs H such that a 2-connected claw-free graph G is Hamiltonian if each end-vertex of every induced copy of H in G has degree at least |V(G)|/3+1. This gives an affirmative solution of the conjecture of Broersma up to an additive constant.  相似文献   

13.
Results regarding the pebbling number of various graphs are presented. We say a graph is of Class 0 if its pebbling number equals the number of its vertices. For diameter d we conjecture that every graph of sufficient connectivity is of Class 0. We verify the conjecture for d = 2 by characterizing those diameter two graphs of Class 0, extending results of Pachter, Snevily and Voxman. In fact we use this characterization to show that almost all graphs have Class 0. We also present a technical correction to Chung's alternate proof of a number theoretic result of Lemke and Kleitman via pebbling. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 119–128, 1997  相似文献   

14.
Roland Kaschek   《Discrete Mathematics》2009,309(17):1275-1281
The present paper proves necessary and sufficient conditions for both lexicographic products and arbitrary graphs to be unretractive. The paper also proves that the automorphism group of a lexicographic product of graphs is isomorphic to a wreath product of a monoid with a small category.  相似文献   

15.
A bull is the graph obtained from a triangle by adding two pendant vertices adjacent to distinct vertices of the triangle. Chvátal and Sbihi showed that the strong perfect graph conjecture holds for Bull-free graphs. We give a polynomial time recognition algorithm for Bull-free perfect graphs.  相似文献   

16.
Circular-perfect graphs form a natural superclass of perfect graphs: on the one hand due to their definition by means of a more general coloring concept, on the other hand as an important class of χ-bound graphs with the smallest non-trivial χ-binding function χ(G)?ω(G)+1.The Strong Perfect Graph Conjecture, recently settled by Chudnovsky et al. [The strong perfect graph theorem, Ann. of Math. 164 (2006) 51-229], provides a characterization of perfect graphs by means of forbidden subgraphs. It is, therefore, natural to ask for an analogous conjecture for circular-perfect graphs, that is for a characterization of all minimal circular-imperfect graphs.At present, not many minimal circular-imperfect graphs are known. This paper studies the circular-(im)perfection of some families of graphs: normalized circular cliques, partitionable graphs, planar graphs, and complete joins. We thereby exhibit classes of minimal circular-imperfect graphs, namely, certain partitionable webs, a subclass of planar graphs, and odd wheels and odd antiwheels. As those classes appear to be very different from a structural point of view, we infer that formulating an appropriate conjecture for circular-perfect graphs, as analogue to the Strong Perfect Graph Theorem, seems to be difficult.  相似文献   

17.
We prove that the strong product of any n connected graphs of maximum degree at most n contains a Hamilton cycle. In particular, GΔ(G) is hamiltonian for each connected graph G, which answers in affirmative a conjecture of Bermond, Germa, and Heydemann. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 299–321, 2005  相似文献   

18.
We present a new method to construct a family of co-spectral graphs. Our method is based on a new type of graph product that we define, the bipartite graph product, which may be of self-interest. Our method is different from existing techniques in the sense that it is not based on a sequence of local graph operations (e.g. Godsil–McKay switching). The explicit nature of our construction allows us, for example, to construct an infinite family of cospectral graphs and provide an easy proof of non-isomorphism. We are also able to characterize fully the spectrum of the cospectral graphs.  相似文献   

19.
Many large graphs can be constructed from existing smaller graphs by using graph operations, for example, the Cartesian product and the lexicographic product. Many properties of such large graphs are closely related to those of the corresponding smaller ones. In this short note, we give some properties of the lexicographic products of vertex-transitive and of edge-transitive graphs. In particular, we show that the lexicographic product of Cayley graphs is a Cayley graph.  相似文献   

20.
It was conjectured by Bouchet that every bidirected graph which admits a nowhere-zero κ flow will admit a nowhere-zero 6-flow. He proved that the conjecture is true when 6 is replaced by 216. Zyka improved the result with 6 replaced by 30. Xu and Zhang showed that the conjecture is true for 6-edge-connected graphs. And for 4-edge-connected graphs, Raspaud and Zhu proved it is true with 6 replaced by 4. In this paper, we show that Bouchet's conjecture is true with 6 replaced by 15 for 3-edge-connected graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号