首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the present work we report the results obtained with a methodology based on direct coupling of a headspace generator to a mass spectrometer for the identification of different types of petroleum crudes in polluted soils. With no prior treatment, the samples are subjected to the headspace generation process and the volatiles generated are introduced directly into the mass spectrometer, thereby obtaining a fingerprint of volatiles in the sample analysed. The mass spectrum corresponding to the mass/charge ratios (m/z) contains the information related to the composition of the headspace and is used as the analytical signal for the characterization of the samples. The signals obtained for the different samples were treated by chemometric techniques to obtain the desired information. The main advantage of the proposed methodology is that no prior chromatographic separation and no sample manipulation are required. The method is rapid, simple and, in view of the results, highly promising for the implementation of a new approach for oil spill identification in soils. Figure PCA score plots illustrate clear discrimination of types of crude oil in polluted soil samples (e.g. results are shown for vertisol)  相似文献   

3.
Membrane-introduction mass spectrometry (MIMS) for chemical analysis involves directly sampling analytes in gaseous, liquid and solid samples through a semi-permeable membrane coupled to a mass spectrometer, yielding selective and sensitive quantitation. Because MIMS is an on-line technique, in which samples can be continuously flowed over a membrane interface, it can yield analytical results in real time without the need for sample clean-up and chromatographic separation. This review highlights trends and developments in MIMS over the past decade and describes recent studies that pertain to its use for on-site, in-situ and in-vivo chemical analysis. We report on advancements in instrumentation, including membrane materials, interface configurations and ionization techniques that have extended the range of analytes amenable to MIMS.We summarize the progress made in the miniaturization of mass spectrometers that have resulted in field-portable systems and review recent applications of continuous mobile monitoring and on-site environmental monitoring to yield both temporally and spatially resolved quantitative and semi-quantitative data. Finally, we describe recent work involving the use of MIMS for in-vivo chemical analysis.  相似文献   

4.
Selected ion flow tube mass spectrometry, SIFT-MS, has been used to investigate if absolute levels of trace compounds in the headspace of ethanol/water vapour mixture can be quantified. This case study was directed towards the analysis of methylamine in distilled ethanol of agricultural origin because of its relevance to quality control legislation in the distillery industry. This has required a detailed study of the ion chemistry occurring – initiated by H3O+ precursor ions – when ethanol/water vapour mixtures are introduced into the H3O+/helium carrier gas swarm and has resulted in the construction of a full scheme of the complex ionic reactions that occur. It has been found that under the SIFT-MS flow reactor conditions (He pressure 130 Pa and temperature 299 K) the terminating ions of the several parallel and sequential reactions that occur are the proton bound ethanol clusters ions, C2H5OH2+(C2H5OH)n, with n = 1,2,3, proton bound trimer (n = 2) being the dominant species. These ethanol cluster ions can be used as precursor (reagent) ions for the chemical ionisation of the methylamine present in the ethanol/water vapour, which produces two characteristic product ions CH3NH2H+(C2H5OH)1,2 that are used for the methylamine analysis. The ratio of the product ion count rate to the precursor ion count rate is used in an analogous way to the routinely used for SIFT-MS analyses to quantify the methylamine concentration. The results of calibration experiments show that using SIFT-MS it is possible to quantify methylamine in liquid ethanol/water mixtures at levels of 0.1 mg/L or greater.  相似文献   

5.
Proton-transfer-reaction mass spectrometry (PTR-MS) is a powerful technique for the real time trace gas analysis of volatile organic compounds (VOCs). However, quadrupole mass spectrometer (MS) used in PTR-MS has a relatively low mass resolution and is therefore not suitable for differentiating isobars. Furthermore, because of the lack of chemical separation before analysis, isomers can not be identified, either. In the present study, by varying the reduced-field E/N in the reaction chamber with a range of 50–180 Td in PTR-MS, we studied the product ion distribution (PID) of three sets of isobars/isomers, i.e. n-propanol/iso-propanol/acetic acid, propanal/acetone and four structural isomers of butyl alcohol. The profiles of the reduced-field dependence (PFD) of the PID under the chosen E/N-values show obvious differences which can be used to discriminate between these isobars/isomers thus enabling the titled method. Noticeably, we have observed that even the isomers, in the case of four structural isomers of butyl alcohol, which show little difference with each other at high reduced-field, can be discriminated easily at low reduced-field. Finally, two examples for the application of this method are discussed: (1) cyclohexanone was identified to be a major compound in the headspace of medical infusion sets; and (2) the differentiation and quantification of propanal and acetone in three synthetic mixtures with different ratios. This study presents a potential method to distinguish and quantify isobars/isomers conveniently in practical applications of PTR-MS analysis without additional instrumental configurations.  相似文献   

6.
Hitherto analysis of chemicals in the field using mass spectrometry (MS) has been limited to analysis of non-polar and thermally stabile organic compounds using either a direct gas leak or a membrane inlet as MS interface. Recently, Professor R. Graham Cooks’ group demonstrated that miniature mass spectrometers operating at elevated pressures (>0.13?Pa (1?·?10?3??Torr)) can be combined with electrospray ionization (ESI) for analysis of polar as well as thermally labile organic compounds. We present a simple miniaturized ESI unit for analysis of small liquid samples using miniature mass spectrometry. The ESI unit operates without pumps and supplementary sheath gases, which makes it very simple to handle in the field. 20–30?µL of sample solution is simply dropped into a small cavity in the ESI unit, where after the spray is initiated by applying high voltage to it. The miniaturized ESI unit was tested in combination with a miniature mass spectrometer (the Mini 10 developed by Professor R. Graham Cooks, Purdue University, IN) and we found that common herbicides (Atrazine, Prometryne, Terbutryne and Triadimefone) could be detected with detection limits around 1?mg?L?1 and with a quantitative reproducibility of +/?30%. These characteristics, although high for environmental samples, are comparable to detection limits obtained with other ESI units used with miniature mass spectrometers and represent an early step forward towards a future field instrument. A major advantage of the capillary spray cell is its direct compatibility with micro extraction techniques for sample pre-concentration.  相似文献   

7.
Ferrocenylketimines from ethylenediamine, trimethylenediamine, N-(2-hydroxyethyl)ethylenediamine and ferrocenecarboxaldehyde were prepared and characterized by elementary analysis, Fourier Transform infrared (FTIR), nuclear magnetic resonance (NMR) and electrospray mass spectrometry (ESMS). Corresponding platinum(II) complexes were also prepared and characterized by elementary analysis, FTIR and ESMS. The results of ESMS are discussed in terms of stability and show that the complexes are unstable and undergo cyclometallation under relatively mild conditions of ionization. This study has also evidenced the possibility of formation of complexes having two metal ions bound to one ligand instead of the more favorable chelates.  相似文献   

8.
Direct analysis in real time-mass spectrometry (DART-MS) was employed as a novel fast method to identify traditional Chinese herbal medicine (TCHM). In order to obtain high quality mass spectra, the ionization temperature was optimized for every kind of sample. With minimal or no sample pretreatment, major TCHM components, including alkaloids, flavonoids and some ginsenosides, were directly detected within several seconds, while thirteen ginsenosides need derivatization to get good mass spectra. Pseudoginsenoside F11, compound K, protopanaxatriol (PPT) and protopanaxadiol (PPD), for the first time were detected without derivatization. Among five of eight tested Chinese herbal medicines, Rhizoma Corydalis, Bulbus Fritillariae Thunbergii, Arecae Semen, Ramulus Uncariae Cum Uncis and Scutellariae Radix, were first time identified by DART-MS. In addition, the ionization mechanisms of major herbal components, alkaloids, flavonoids and ginsenosides, were discussed in detail. Our results demonstrated that DART-MS could provide a rapid, reliable and environmental friendly method for the rapid identification of TCHM, and may be applicable to other plants.  相似文献   

9.
Volatile organic compounds (VOCs) are ubiquitous in the environment, originating from many different natural and anthropogenic sources, including tobacco smoke. Long-term exposure to certain VOCs may increase the risk for cancer, birth defects, and neurocognitive impairment. Therefore, VOC exposure is an area of significant public health concern. Urinary VOC metabolites are useful biomarkers for assessing VOC exposure because of non-invasiveness of sampling and longer physiological half-lives of urinary metabolites compared with VOCs in blood and breath. We developed a method using reversed-phase ultra high performance liquid chromatography (UPLC) coupled with electrospray ionization tandem mass spectrometry (ESI/MSMS) to simultaneously quantify 28 urinary VOC metabolites as biomarkers of exposure. We describe a method that monitors metabolites of acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon-disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride and xylene. The method is accurate (mean accuracy for spiked matrix ranged from 84 to104%), sensitive (limit of detection ranged from 0.5 to 20 ng mL−1) and precise (the relative standard deviations ranged from 2.5 to 11%). We applied this method to urine samples collected from 1203 non-smokers and 347 smokers and demonstrated that smokers have significantly elevated levels of tobacco-related biomarkers compared to non-smokers. We found significant (p < 0.0001) correlations between serum cotinine and most of the tobacco-related biomarkers measured. These findings confirm that this method can effectively quantify urinary VOC metabolites in a population exposed to volatile organics.  相似文献   

10.
For the on‐line monitoring of flavour compound release, atmospheric pressure chemical ionization (APCI) and proton transfer reaction (PTR) combined to mass spectrometry (MS) are the most often used ionization technologies. APCI‐MS was questioned for the quantification of volatiles in complex mixtures, but direct comparisons of APCI and PTR techniques applied on the same samples remain scarce. The aim of this work was to compare the potentialities of both techniques for the study of in vitro and in vivo flavour release. Aroma release from flavoured aqueous solutions (in vitro measurements in Teflon bags and glass vials) or flavoured candies (in vivo measurements on six panellists) was studied using APCI‐ and PTR‐MS. Very similar results were obtained with both techniques. Their sensitivities, expressed as limit of detection of 2,5‐dimethylpyrazine, were found equivalent at 12 ng/l air. Analyses of Teflon bag headspace revealed a poor repeatability and important ionization competitions with both APCI‐ and PTR‐MS, particularly between an ester and a secondary alcohol. These phenomena were attributed to dependency on moisture content, gas/liquid volume ratio, proton affinities and product ion distribution, together with inherent drawbacks of Teflon bags (adsorption, condensation of water and polar molecules). Concerning the analyses of vial headspace and in vivo analyses, similar results were obtained with both techniques, revealing no competition phenomena. This study highlighted the equivalent performances of APCI‐MS and PTR‐MS for in vitro and in vivo flavour release investigations and provided useful data on the problematic use of sample bags for headspace analyses. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
12.
This paper gives an overview of the potentials of liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QqTOF) in the environmental analysis. Examples of applications of QqTOF instruments for target analysis of pharmaceuticals and pesticides are presented and discussed, as well as applications aimed on the identification of unknown compounds present in environmental waters or on the elucidation of structures of biodegradation and photodegradation products. Specific issues such as uncertainty of mass measurement and quantitative performances are discussed in details.  相似文献   

13.
The presence of antibiotics in the environment is of increased interest and, as modern mass spectrometers become more efficient, we are increasingly aware of traces of pharmaceuticals appearing in a wide range of environmental and biological matrices. The Q-Exactive mass spectrometer is part of these innovative hybrid high-resolution mass spectrometers (HRMS) which is often associated with peptide sequencing or metabolomics but with a limited number of studies focusing on its application to the quantification of small molecules in environmental and biological matrices. It combines the high resolving power (RP) performance of the Orbitrap with the high performance selectivity of the quadrupole. Tetracyclines (TCs) are a family comprising some of the most widely used antibiotics in veterinary medicine. This study presents the quantitative performances of the Q-Exactive by illustrating a new approach to quantify TCs using liquid chromatography coupled to a HRMS in a complex matrix, i.e., swine manure. The Q-Exactive was used at high-resolution in both full scan (FS) and targeted ion fragmentation (tMS2) modes. These two modes were optimized and compared to determine the most reliable and efficient approach to quantify TCs with good accuracy. The proposed method was optimized to obtain the best selectivity and sensitivity, thus eliminating false positive and allowing the detection of trace levels of analyte. The TCs were extracted from the matrix by sonication using McIlvaine buffer followed by an off-line solid phase extraction method to concentrate and clean the extracts. Both FS and tMS2 modes presented good linearity (R2 > 0.991) and repeatability (RSD < 15%). Mass accuracy was acceptable with values below 2 ppm. The method detection limits (MLD) calculated from the calibration curves ranged from 2.0 to 12 ng g−1 for FS mode and from 1.5 to 3.6 ng g−1 for tMS2 mode. Accuracy and interday/intraday relative standard deviations were below 21% for both modes studied. TCs were quantified in real samples of swine manure with concentrations ranging from 29 to 75 ng g−1. This study showed the possibility of using hybrid HRMS for trace detection and quantification of TCs in a complex matrix, thus avoiding false positive while achieving good selectivity and sensitivity.  相似文献   

14.
Application of chemometric methods to mass spectrometry imaging (MSI) data faces a bottleneck concerning the vast size of the experimental data sets. This drawback is critical when considering high‐resolution mass spectrometry data, which provide several thousand points for each considered pixel. In this work, different approaches have been tested to reduce the size of the analyzed data with the aim to allow the subsequent application of typical chemometric methods for image analysis. The standard approach for MSI data compression consists in binning mass spectra for each pixel to reduce the number of m/z values. In this work, a method is proposed to handle the huge size of MSI data based on the adaptation of a liquid chromatography‐mass spectrometry data compression method by the detection of regions of interest. Results showed that both approaches achieved high compression rates, although the proposed regions of interest–based method attains this reduction requiring lower computational requirements and keeping utter spectral information. For instance, typical compression rate reached values higher than 90% without loss of information in images and spectra.  相似文献   

15.
Gas chromatography (GC) is an analytical tool very useful to investigate the composition of gaseous mixtures. The different gases are separated by specific columns but, if hydrogen (H2) is present in the sample, its detection can be performed by a thermal conductivity detector or a helium ionization detector. Indeed, coupled to GC, no other detector can perform this detection except the expensive atomic emission detector. Based on the detection and analysis of H2 isotopes by low‐pressure chemical ionization mass spectrometry (MS), a new method for H2 detection by GC coupled to MS with an electron ionization ion source and a quadrupole analyser is presented. The presence of H2 in a gaseous mixture could easily be put in evidence by the monitoring of the molecular ion of the protonated carrier gas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Research in polymer science and engineering is moving from classical methodologies to advanced analytical strategies in which mass spectrometry (MS)‐based techniques play a crucial role. The molecular complexity of polymers requires new characterization tools and approaches to elucidate the detailed structural information. In this contribution, a comparison study of poly(methyl acrylate)s (PMA) using different tandem mass spectrometry techniques (ESI, APCI, and MALDI MS/MS) is reported to provide insights into the macromolecular structure with the aid of a special MS/MS data interpretation software. Collision‐induced dissociation (CID) was utilized to examine the fragmentation pathways of PMAs synthesized via various controlled radical polymerization techniques. All three mass spectrometry techniques are used to analyze structural details of PMAs and the labile end‐groups are determined based on the fragmentation behavior in CID. Fragmentation products were identified which are characteristics for the cleavage between the polymer chain and the end‐group. The application of a tailor‐made software is shown to analyze complex MS/MS data, and it is proven that this kind of software will be helpful for polymer scientists to identify fragmentation products obtained by tandem mass spectrometry similar to the fields of proteomics, metabolomics, genomics, and glycomics. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
Open access mass spectrometry now provides the opportunity to move this spectroscopic method to the beginning of the analytical chain, a place formerly the exclusive province of NMR and TLC. To date this transition has been occurring in industrial settings but there has been less change in the academic environment. This paper provides one blueprint for setting up such a facility, primarily in support of organic synthesis but also for the use of biological scientists. The open access format used at UCI utilizes four instruments: an ESI-TOFMS system used in the flow injection mode, two GC/MS systems (one in EI and one in CI) and a MALDI-TOFMS system. The first three instruments have autosamplers and open access software whereas the MALDI system has a fully automated plate handling interface. This level of automation allows access to the instruments by a user community of more than 100 users, day or night. The decisions made in setting up these instruments were based on a 'keep it simple' philosophy, given the fact that the primary type of data of interest is the molecular mass of the analyte and that data are required for a very wide range of structures.  相似文献   

18.
A laser ablation time of flight mass spectrometry (LA-TOF-MS) technique was applied to the isotopic analysis of variety of microparticles. Sample with only two Gd2O3 particles with ~ 10 μm in diameter, the mixed particles composed of Gd2O3, Ni, and Pd, and silica particles coated with few tens of ng of Gd have been analyzed. The ablation of particles was achieved by a second harmonic of a Nd:YAG laser, 532 nm with loading these particles onto various metal matrices such as Ta, Zn, and Cu. Isotopic analysis for adopted sample was successfully carried out with good mass resolution. The loaded two small sized particles (~ 10 μm) were analyzed with reasonable isotopic ratios for enough time to observe the ion signal by the 10 Hz laser. In the case of coated particle, isotopic abundances of Gd (~ 50 ng/particle) were observed and the measured isotopic ratio reasonably agreed to the natural abundance of Gd. As far as the sample loading plates (matrix) are concerned, Ta and Cu plates showed more improved detection sensitivity and mass resolution. Direct analysis of swiped-mixed metal particles onto the cotton textile shows the possibility for an application of environmental sample analysis in nuclear safeguards.  相似文献   

19.
Procyanidins are polymeric flavan‐3‐ones occurring in many plants with antioxidant and other beneficial bioactivities. They are composed of catechin and epicatechin monomeric units connected by single carbon‐carbon B‐type linkages or A‐type linkages containing both carbon‐carbon and carbon‐oxygen‐carbon bonds. Their polymeric structure makes analysis of procyanidin mixtures always difficult. Evaluation of procyanidins according to degree of polymerization (DP) using high‐performance liquid chromatography (HPLC) is time‐consuming and at best has resolved polymeric families up to DP‐17. To expedite studies of procyanidins, the utility of positive ion electrospray ion mobility‐mass spectrometry (IM‐MS) was investigated for the rapid separation and characterization of procyanidins in mixtures. Applying IM‐MS to analyse structurally defined standards containing up to five subunits, procyanidins could be resolved in less than 6 ms not only by degree of polymerization but also by linkage type. A‐type procyanidins could be resolved from B‐type and both could be at least partially resolved from mixed‐type procyanidins of the same DP. IM‐MS separated higher order procyanidins with DP of at least 24 from extracts of cranberry. As DP increased, the abundances of multiply‐charged procyanidins also increased. During IM‐MS of ions of similar m/z, the ion drift times decreased inversely with increasing charge state. Therefore, IM‐MS was shown to separate mixtures of procyanidins containing at least 24 interconnected subunits in less than 16 ms, not only according to DP, but also according to linkage type between subunits and charge state.  相似文献   

20.
Solvent systems for use with LC-MS often result in a compromise between chromatographic performance and mass spectrometric detection, exemplified here by a LC-MS/MS method development for the analysis of ephedrines in doping control. Ephedrines, frequently found in therapeutic and nutritional preparations, are among the most commonly administered doping agents in competitive sport. Improved separation of these hydrophilic, basic compounds, some of which are diastereoisomers, is achieved in reversed-phase LC by the use of a high pH mobile phase in order to suppress analyte ionisation, and thus alter their polarity, resulting in reduced peak tailing and enhanced retention. However, when coupled to an ESI-MS detector, this eluent composition generated a non-linear and poorly reproducible signal. APCI yielded greater stability and reproducibility and is here presented as an ion source for the analysis of basic compounds under conditions that suppress their ionisation. Errors as large as 49.3% were observed with ESI, compared with 15.4% generated using APCI, for pseudoephedrine over the calibration range (25-400 μg/mL) in urine with a simple dilution and injection of samples. These data highlight the importance of suitable MS conditions for stable performance, necessary for accurate quantification, without undue compromise to the LC separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号