首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using a high-resolution single mode infrared-optical parametric oscillator laser to prepare CH(3)I in single (J,K) rotational levels of the nu(1) (symmetric C-H stretching) =1 vibrational state, we have obtained rovibrationally resolved infrared-vacuum ultraviolet-pulsed field ionization-photoelectron (IR-VUV-PFI-PE) spectra of the CH(3)I(+)(X(2)E(32);nu(1)(+)=1;J(+),P(+)) band, where (J,K) and (J(+),P(+)) represent the respective rotational quantum numbers of CH(3)I and CH(3)I(+). The IR-VUV-PFI-PE spectra observed for K=0 and 1 are found to have nearly identical structures. The IR-VUV-PFI-PE spectra for (J,K)=(5,0) and (7, 0) are also consistent with the previous J-selected IR-VUV-PFI-PE measurements. The analysis of these spectra indicates that the photoionization cross section of CH(3)I depends strongly on DeltaJ(+)=J(+)-J: but not on J and K. This observation lends strong support for the major assumption adopted for the semiempirical simulation scheme, which has been used for the simulation of the origin bands observed in VUV-PFI-PE study of polyatomic molecules. Using the state-to-state photoionization cross sections determined in this IR-VUV study, we have obtained excellent simulation of the VUV-PFI-PE origin band of CH(3)I(+)(X (2)E(32)), yielding more precise IE(CH(3)I)=76 930.7+/-0.5 cm(-1) and nu(1) (+)=2937.8+/-0.2 cm(-1).  相似文献   

2.
The vacuum ultraviolet (VUV) laser pulsed field ionization photoelectron (PFI-PE) spectrum of cis-dichloroethene (cis-ClCH[Double Bond]CHCl) has been measured in the energy region of 77 600-79 500 cm(-1). On the basis of the semiempirical simulation of the origin PFI-PE band, we have obtained the IE(cis-ClCH[Double Bond]CHCl) to be 77 899.5+/-2.0 cm(-1) (9.658 39+/-0.000 25 eV). The assignment of the vibrational bands resolved in the VUV-PFI-PE spectrum are guided by high-level ab initio calculations of the vibrational frequencies for cis-ClCH[Double Bond]CHCl(+) and the Franck-Condon factors for the ionization transitions. Combining the results of the present VUV-PFI-PE measurement and the recent VUV-infrared-photoinduced Rydberg ionization study, the vibrational frequencies for eleven of the twelve vibrational modes of cis-ClCH[Double Bond]CHCl(+) have been experimentally determined: nu(1) (+)(a(1))=181 cm(-1), nu(2) (+)(a(2))=277 cm(-1), nu(3) (+)(b(2))=580 cm(-1), nu(4) (+)(b(1))=730 cm(-1), nu(5) (+)(a(1))=810 cm(-1), nu(6) (+)(a(2))=901 cm(-1), nu(8) (+)(a(1))=1196 cm(-1), nu(9) (+)(b(2))=1348 cm(-1), nu(10) (+)(a(1))=1429 cm(-1), nu(11) (+)(b(2))=3067 cm(-1), and nu(12) (+)(a(1))=3090 cm(-1)). These values are compared to theoretical anharmonic vibrational frequencies obtained at the MP2/6-311G(2df,p) and CCSD(T)/6-311G(2df,p) levels. The IE prediction for cis-ClCH[Double Bond]CHCl has also been calculated with the wave function based CCSD(T)/CBS method, which involves the approximation to the complete basis set (CBS) and the high-level correlation corrections. The theoretical IE(cis-ClCH[Double Bond]CHCl)=9.668 eV thus obtained is found to have a deviation of less than 10 meV with respect to the experimental IE value.  相似文献   

3.
The pulsed field ionization-photoelectron (PFI-PE) spectrum of allyl radical CH2CHCH2 (C3H5) in the energy range of 65 200-66 600 cm-1 has been measured using vacuum ultraviolet laser. Based on the simulation of the rotational structures resolved in the vibrational PFI-PE bands of C3H5+(X 1A1;0(0+) and nu7+=1), the ionization energies (IEs) of C3H5(X 2A2;0(0)) to form C3H5+(X 1A1;0(0+) and nu7+=1) are determined to be 65 584.6+/-2.0 cm-1 (8.131 46+/-0.000 25 eV) and 66 020.9+/-2.0 cm-1 (8.185 56+/-0.000 25 eV), respectively, where nu7+(a1) is the symmetric C-C-C bending mode of C3H5+(X 1A1). These values are compared to IE(C3H5) values obtained in previous experimental and high-level ab initio quantum theoretical studies.  相似文献   

4.
The preparation of methyl iodide (CH(3)I) in selected rovibrational states [nu(7)=1 (C-H stretch); J] by infrared (IR) excitation prior to vacuum ultraviolet (VUV) photoionization has greatly simplified the observed pulsed field ionization-photoelectron (PFI-PE) spectra, allowing the direct determination of the rotational constants B(+)(C(+))=0.254+/-0.003 cm(-1) for CH(3)I(+)(X (2)E(3/2);nu(7) (+)) and the ionization energy (76 896.9+/-0.2 cm(-1)) for CH(3)I(+)(X (2)E(3/2);nu(7) (+)=1,J(+)=3/2)<--CH(3)I(X (1)A(1);nu(7)=1,J=0). The IR-VUV-PFI-PE and IR-VUV-photoion measurements also provide relative state-to-state (nu(7) (+)=1, J(+)<--nu(7)=1, J) cross sections for the photoionization process.  相似文献   

5.
By preparing ethylene [C2H4(X1Ag)] in selected rotational levels of the nu11(b1u), nu2+nu12(b1u), or nu9(b2u) vibrational state with infrared (IR) laser photoexcitation prior to vacuum ultraviolet (VUV) laser photoionization, we have recorded rotationally resolved pulsed field ionization-photoelectron (PFI-PE) spectra for C2H4+(X2B3u) in the energy region of 0-3000 cm(-1) above the ionization energy (IE) of C2H4(X1Ag). Here, nu2(ag), nu9(b2u), nu11(b1u), and nu12(b1u) represent the C-C stretching, CH2 stretching, CH2 stretching, and CH2 bending modes of C2H4(X1Ag), respectively. The fully rovibrationally resolved spectra have allowed unambiguous symmetry assignments of the observed vibrational bands, which in turn have provided valuable information on the photoionization dynamics of C2H4. The IR-VUV photoionization of C2H4(X1Ag) via the nu11(b1u) or nu2+nu12(b1u) vibrational states is found to predominantly produce vibrational states of C2H4+(X2B3u) with b1u symmetry, which cannot be observed in single-photon VUV-PFI-PE measurements of C2H4(X1Ag). The analysis of the observed IR-VUV-PFI-PE bands has provided the IE(C2H4) = 84,790.2(2) cm(-1) and accurate vibrational frequencies for the nu4+(au)[84.1(2) cm(-1)], nu12+(b1u)[1411.7(2) cm(-1)], nu4+ +nu12+(b1g)[1482.5(2) cm(-1)], nu2+(ag)[1488.3(2) cm(-1)], nu2+ + nu4+(au)[1559.2(2) cm(-1)], 2nu4+ + nu12 +(b1u)[1848.5(2) cm(-1)], 4nu4+ + nu12 +(b1u)[2558.8(2) cm(-1)], nu2+ + nu12 +(b1u)[2872.7(2) cm(-1)], and nu11+(b1u)[2978.7(2) cm(-1)] vibrational states of C2H4+(X2B3u), where nu4+ is the ion torsional state. The IE(C2H4) and the nu4+(au), nu2+(ag), and nu2+ + nu4+ (au) frequencies are in excellent accord with those obtained in previous single-photon VUV-PFI-PE measurements. The other ion vibrational frequencies represent new experimental determinations. We have also performed high-level ab initio anharmonic vibrational frequency calculations for C2H4(X1Ag) and C2H4+(X2B3u) at the CCSD(T)/aug-cc-pVQZ level for guidance in the assignment of the IR-VUV-PFI-PE spectra. All theoretical vibrational frequencies for the neutral and ion, except the ion torsional frequency, are found to agree with experimental vibrational frequencies to better than 1%.  相似文献   

6.
The synchrotron based vacuum ultraviolet-pulsed field ionization-photoelectron (VUV-PFI-PE) spectrum of ammonia (NH(3)) has been measured in the energy range 10.12-12.12 eV using a room-temperature NH(3) sample. In addition to extending the VUV-PFI-PE measurement to include the v(2)(+) = 0, 10, 11, 12, and 13 and the v(1)(+) + nv(2)(+) (n = 4-9) vibrational bands, the present study also reveals photoionization transition line strengths for higher rotational levels of NH(3), which were not examined in previous PFI-PE studies. Here, v(1)(+) and v(2)(+) represent the N-H symmetric stretching and inversion vibrational modes of the ammonia cation (NH(3)(+)), respectively. The relative PFI-PE band intensities for NH(3)(+)(v(2)(+)=0-13) are found to be in general agreement with the calculated Franck-Condon factors. However, rotational simulation indicates that rotational photoionization transitions of the P-branches, particularly those for the lower v(2)(+) PFI-PE bands, are strongly enhanced by forced rotational autoionization. For the synchrotron based VUV-PFI-PE spectrum of the origin band of NH(3)(+), rotational transition intensities of the P-branch are overwhelming compared to those of other rotational branches. Similar to that observed for the nv(2)(+) (n = 0-13) levels, the v(1)(+) + nv(2)(+) (n = 4-9) levels are found to have a positive anharmonicity constant; i.e., the vibrational spacing increases as n is increased. The VUV laser PFI-PE measurement of the origin band has also been made using a supersonically cooled NH(3) sample. The analysis of this band has allowed the direct determination of the ionization energy of NH(3) as 82158.2 +/- 1.0 cm(-1), which is in good accord with the previous PFI-PE and photoionization efficiency measurements. Using the known nd(v(2)(+)=1,1(0)<--0(0)) Rydberg series of NH(3) as an example, we have demonstrated a valuable method based on two-color infrared-VUV-photoion depletion measurements for determining the rotational character of autoionizing Rydberg states.  相似文献   

7.
When a mixture of ethylene in a large excess of neon is codeposited at 4.3 K with a beam of neon atoms that have been excited in a microwave discharge, two groups of product absorptions appear in the infrared spectrum of the deposit. Similar studies using C(2)H(4)-1-(13)C and C(2)D(4) aid in product identification. The first group of absorptions arises from a cation product which possesses two identical carbon atoms, giving the first infrared identification of two fundamentals of C(2)H(4)(+) and three of C(2)D(4)(+), as well as a tentative identification of ν(9) of C(2)H(4)(+). The positions of these absorptions are consistent with the results of density functional calculations and of earlier photoelectron studies. All of the members of the second group of product absorptions possess two inequivalent carbon atoms. They are assigned to the vinyl radical, C(2)H(3), and to C(2)D(3), in agreement with other recent infrared assignments for those species.  相似文献   

8.
The pulsed field ionization-photoelectron (PFI-PE) spectrum of bromochloromethane (CH2BrCl) in the region of 85,320-88,200 cm-1 has been measured using vacuum ultraviolet laser. The vibrational structure resolved in the PFI-PE spectrum was assigned based on ab initio quantum chemical calculations and Franck-Condon factor predictions. At energies 0-1400 cm-1 above the adiabatic ionization energy (IE) of CH2BrCl, the Br-C-Cl bending vibration progression (nu1+=0-8) of CH2BrCl+ is well resolved and constitutes the major structure in the PFI-PE spectrum, whereas the spectrum at energies 1400-2600 cm-1 above the IE(CH2BrCl) is found to exhibit complex vibrational features, suggesting perturbation by the low lying excited CH2BrCl+(A 2A") state. The assignment of the PFI-PE vibrational bands gives the IE(CH2BrCl)=85,612.4+/-2.0 cm-1 (10.6146+/-0.0003 eV) and the bending frequencies nu1+(a1')=209.7+/-2.0 cm-1 for CH2BrCl+(X2A'). We have also examined the dissociative photoionization process, CH2BrCl+hnu-->CH2Cl++Br+e-, in the energy range of 11.36-11.57 eV using the synchrotron based PFI-PE-photoion coincidence method, yielding the 0 K threshold or appearance energy AE(CH2Cl+)=11.509+/-0.002 eV. Combining the 0 K AE(CH2Cl+) and IE(CH2BrCl) values obtained in this study, together with the known IE(CH2Cl), we have determined the 0 K bond dissociation energies (D0) for CH2Cl+-Br (0.894+/-0.002 eV) and CH2Cl-Br (2.76+/-0.01 eV). We have also performed CCSD(T, full)/complete basis set (CBS) calculations with high-level corrections for the predictions of the IE(CH2BrCl), AE(CH2Cl+), IE(CH2Cl), D0(CH2Cl+-Br), and D0(CH2Cl-Br). The comparison between the theoretical predictions and experimental determinations indicates that the CCSD(T, full)/CBS calculations with high-level corrections are highly reliable with estimated error limits of <17 meV.  相似文献   

9.
The vacuum ultraviolet pulsed field ionization-photoelectron and photoionization efficiency spectra of NCCN have been measured in the energy region of 13.25-17.75 eV. The analyses of these spectra have provided accurate ionization energy (IE) values of 13.371+/-0.001, 14.529+/-0.001, 14.770+/-0.001, and 15.516+/-0.001 eV for the formation of NCCN(+) in the X(2)Pi(g), A(2)Sigma(g) (+), B(2)Sigma(u) (+), and C(2)Pi(u) states, respectively. The ionization energy [NCCN(+)(B(2)Sigma(u) (+))] value determined here indicates that the origin of the NCCN(+)(B(2)Sigma(u) (+)) state lies lower in energy by 25 meV than previously reported. A set of spectroscopic parameters for NCCN(+)(X(2)Pi(g)) has been calculated using high level ab initio calculations. The experimental spectra are found to consist of ionizing transitions populating the vibronic levels of NCCN(+), which consist of pure vibronic progressions, combination modes involving the symmetric CN stretch, the CC stretch, and even quanta of the antisymmetric CN stretch, and bending vibrations. These bands are identified with the guidance of the present ab initio calculations.  相似文献   

10.
By preparing methyl bromide (CH3Br) in selected rotational levels of the CH3Br(X(1)A1; v1 = 1) state with infrared (IR) laser excitation prior to vacuum-ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) measurements, we have observed rotationally resolved photoionization transitions to the CH3Br(+)(X(2)E(3/2); v1(+) = 1) state, where v1 and v1(+) are the symmetric C-H stretching vibrational mode for the neutral and cation, respectively. The VUV-PFI-PE origin band for CH3Br(+)(X(2)E(3/2)) has also been measured. The simulation of these IR-VUV-PFI-PE and VUV-PFI-PE spectra have allowed the determination of the v1(+) vibrational frequency (2901.8 +/- 0.5 cm(-1)) and the ionization energies of the origin band (85 028.3 +/- 0.5 cm(-1)) and the v1(+) = 1 <-- v1 = 1 band (84 957.9 +/- 0.5 cm(-1)).  相似文献   

11.
Vacuum ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) spectroscopy has been applied to the study of the sulfur monoxide radical (SO) prepared by using a supersonically cooled radical beam source based on the 193 nm excimer laser photodissociation of SO(2). The vibronic VUV-PFI-PE bands for the photoionization transitions SO(+)(X(2)Π(1∕2); v(+) = 0) ← SO(X(3)Σ(-); v = 0); and SO(+)((2)Π(3∕2); v(+) = 0) ← SO(X(3)Σ(-); v = 0) have been recorded. On the basis of the semiempirical simulation of rotational branch contours observed in these PFI-PE bands, we have obtained highly precise ionization energies (IEs) of 83,034.2 ± 1.7 cm(-1) (10.2949 ± 0.0002 eV) and 83,400.4 ± 1.7 cm(-1) (10.3403 ± 0.0002 eV) for the formation of SO(+)(X(2)Π(1∕2); v(+) = 0) and SO(+)((2)Π(3∕2); v(+) = 0), respectively. The present VUV-PFI-PE measurement has enabled the direct determination of the spin-orbit coupling constant (A(0)) for SO(+)(X(2)Π(1∕2,3∕2)) to be 365.36 ± 0.12 cm(-1). We have also performed high-level ab initio quantum chemical calculations at the coupled-cluster level up to full quadruple excitations and complete basis set (CBS) extrapolation. The zero-point vibrational energy correction, the core-valence electronic correction, the spin-orbit coupling, and the high-level correction are included in the calculation. The IE[SO(+)(X(2)Π(1∕2,3∕2))] and A(0) predictions thus obtained are found to be in remarkable agreement with the experimental determinations.  相似文献   

12.
We have observed fully rotationally resolved transitions of the photoelectron vibrational bands 2(4), 2(5), 1(1)2(1), and 1(1)2(3) for ammonia cation (NH3+) by two-color infrared (IR)-vacuum ultraviolet (VUV)- pulsed field-ionization photoelectron (PFI-PE) measurements. By preparing an intermediate rovibrational state of neutral NH(3) with a known parity by IR excitation followed by VUV-PFI-PE measurements, we show that the photoelectron parity can be determined unambiguously. The IR-VUV-PFI-PE measurement of the 2(4) band clearly reveals the formation of both even and odd l states for the photoelectrons, where l is the orbital angular momentum quantum number. This observation is consistent with the conclusion that the lack of inversion symmetry for NH3 and NH3+ allows odd/even l mixings, rendering the production of both odd and even l states for the photoelectrons. Evidence is also found, indicating that the photoionization transitions with DeltaK=0 are strongly favored compared to that with DeltaK=3. For the 2(5), 1(1)2(1), and 1(1)2(3) bands, only DeltaK=0 transitions for the production of even l photoelectron states from the J'K'=2(0) rotational level of NH3(nu1=1) are observed. The preferential formation of even l photoelectron states for these vibrational bands is attributed to the fact that the DeltaK=0 transitions for the formation of odd l photoelectron states from the 2(0) rotational level of NH3(nu1=1) are suppressed by the constraint of nuclear-spin statistics. In addition to information obtained on the photoionization dynamics of NH3, this experiment also provides a more precise value of 3232+/-10 cm-1 for the nu1+ (N-H stretch) vibrational frequency of NH3+.  相似文献   

13.
New high-level quantum chemical calculations have been undertaken to understand the rates and mechanisms of the reactive and associative channels for the reactants C2H2(+) + H2. The reactive channel, which produces C2H3(+) + H, has been shown to be slightly endothermic, confirming earlier calculations at a somewhat lower level and in agreement with some recent experimental work. The associative channel, leading to C2H4+, has been shown to proceed via a transition state with negative energy relative to the reactants, so that association is predicted to be efficient. This result is in conflict with an earlier theoretical study but in agreement with low-temperature experimental measurements.  相似文献   

14.
Vacuum ultraviolet pulsed-field ionization-photoelectron (PFI-PE) spectra of H(2)S have been recorded at PFI-PE resolutions of 0.6-1.0 meV in the energy range of 10-17 eV using high-resolution synchrotron radiation. The PFI-PE spectrum, which covers the formation of the valence electronic states H(2)S(+) (X (2)B(1), A (2)A(1), and B (2)B(2)), is compared to the recent high-resolution He I photoelectron spectra of H(2)S obtained by Baltzer et al. [Chem. Phys. 195, 403 (1995)]. In addition to the overwhelmingly dominated origin vibrational band, the PFI-PE spectrum for H(2)S(+)(X (2)B(1)) is found to exhibit weak vibrational progressions due to excitation of the combination bands in the nu(1) (+) symmetric stretching and nu(2) (+) bending modes. While the ionization energy (IE) for H(2)S(+)(X (2)B(1)) obtained here is in accord with values determined in previously laser PFI-PE measurements, the observation of a new PFI-PE band at 12.642+/-0.001 eV suggests that the IE for H(2)S(+)(A (2)A(1)) may be 0.12 eV lower than that reported in the He I study. The simulation of rotational structures resolved in PFI-PE bands shows that the formation of H(2)S(+)(X (2)B(1)) and H(2)S(+)(A (2)A(1)) from photoionization of H(2)S(X (1)A(1)) is dominated by type-C and type-B transitions, respectively. This observation is consistent with predictions of the multichannel quantum defect theory. The small changes in rotational angular momentum observed are consistent with the dominant atomiclike character of the 2b(1) and 5a(1) molecular orbitals of H(2)S. The PFI-PE measurement has revealed perturbations of the (0, 6, 0) K(+)=3 and (0, 6, 0) K(+)=4 bands of H(2)S(+)(A (2)A(1)). Interpreting that these perturbations arise from Renner-Teller interactions at energies close to the common barriers to linearity of the H(2)S(+) (X (2)B(1) and A (2)A(1)) states, we have deduced a barrier of 23,209 cm(-1) for H(2)S(+)(X (2)B(1)) and 5668 cm(-1) for H(2)S(+)(A (2)A(1)). The barrier of 23 209 cm(-1) for H(2)S(+)(X (2)B(1)) is found to be in excellent agreement with the results of previous studies. The vibrational PFI-PE bands for H(2)S(+)(B (2)B(2)) are broad, indicative of the predissociative nature of this state.  相似文献   

15.
The authors have obtained rotationally resolved vacuum ultraviolet pulsed field ionization-photoelectron (vuv-PFI-PE) spectrum of HD in the photon energy range of 15.29-18.11 eV, covering the ionization transitions HD+(X 2Sigmag+,v+=0-21,N+)<--HD(X 1Sigmag+,v"=0,J"). The assignment of rotational transitions resolved in the vuv-PFI-PE vibrational bands for HD+(X 2Sigmag+,v+=0-20) and their simulation using the Buckingham-Orr-Sichel (BOS) model are presented. Rotational branches corresponding to the DeltaN=N+-J"=0, +/-1, +/-2, +/-3, and +/-4 transitions are observed in the vuv-PFI-PE spectrum of HD. The BOS simulation shows that the perturbation of vuv-PFI-PE rotational line intensities due to near resonance autoionization is very minor at v+>or=5 and decreases as v+ is increased. Thus, the rotationally resolved PFI-PE bands for HD+(v+>or=5) presented here provide reliable estimates of state-to-state cross sections for direct photoionization of HD, while the rotationally resolved PFI-PE bands for HD+(v+<5) are useful data for fundamental understanding of the near resonance autoionizing mechanism. On the basis of the rovibrational assignment of the vuv-PFI-PE bands, the ionization energies for the formation of HD+(X 2Sigmag+,v+=0-20,N+) from HD(X 1Sigmag+,v"=0,J") and the vibrational constants (omegae, omegaechie, omegaeye, and omegaeze), the rotational constants (Be and alphae), the vibrational energy spacings, and the dissociation energy for HD+(X 2Sigmag+) are determined. As expected, these values are found to be in excellent agreement with high level theoretical predictions.  相似文献   

16.
This paper presents the methodology to generate beams of ions in single quantum states for bimolecular ion-molecule reaction dynamics studies using pulsed field ionization (PFI) of atoms or molecules in high-n Rydberg states produced by vacuum ultraviolet (VUV) synchrotron or laser photoexcitation. Employing the pseudocontinuum high-resolution VUV synchrotron radiation at the Advanced Light Source as the photoionization source, PFI photoions (PFI-PIs) in selected rovibrational states have been generated for ion-molecule reaction studies using a fast-ion gate to pass the PFI-PIs at a fixed delay with respect to the detection of the PFI photoelectrons (PFI-PEs). The fast ion gate provided by a novel interleaved comb wire gate lens is the key for achieving the optimal signal-to-noise ratio in state-selected ion-molecule collision studies using the VUV synchrotron based PFI-PE secondary ion coincidence (PFI-PESICO) method. The most recent development of the VUV laser PFI-PI scheme for state-selected ion-molecule collision studies is also described. Absolute integral cross sections for state-selected H2+ ions ranging from v+ = 0 to 17 in collisions with Ar, Ne, and He at controlled translational energies have been obtained by employing the VUV synchrotron based PFI-PESICO scheme. The comparison between PFI-PESICO cross sections for the H2+(HD+)+Ne and H2+(HD+)+He proton-transfer reactions and theoretical cross sections based on quasiclassical trajectory (QCT) calculations and three-dimensional quantum scattering calculations performed on the most recently available ab initio potential energy surfaces is highlighted. In both reaction systems, quantum scattering resonances enhance the integral cross sections significantly above QCT predictions at low translational and vibrational energies. At higher energies, the agreement between experiment and quasiclassical theory is very good. The profile and magnitude of the kinetic energy dependence of the absolute integral cross sections for the H2+(v+ = 0-2,N+ = 1)+He proton-transfer reaction unambiguously show that the inclusion of Coriolis coupling is important in quantum dynamics scattering calculations of ion-molecule collisions.  相似文献   

17.
A detailed theoretical investigation for the ion-molecule reaction of HCN (+) with C 2H 2 is performed at the B3LYP/6-311G(d,p) and CCSD(T)/6-311++G(3df,2pd) (single-point) levels. Possible energetically allowed reaction pathways leading to various low-lying dissociation products are probed. It is shown that eight dissociation products P 1 (H 2C 3N (+)+H), P 2 (CN+C 2H 3 (+)), P 3 (HC 3N (+)+H 2), P 4 (HCCCNH (+)+H), P 5 (H 2NCCC (+)+H), P 6 (HCNCCH (+)+H), P 7 (C 2H 2 (+)+HCN), and P 8 (C 2H 2 (+)+HNC) are both thermodynamically and kinetically accessible. Among the eight dissociation products, P 1 is the most abundant product. P 7 and P 3 are the second and third feasible products but much less competitive than P 1 , followed by the almost negligible product P 2 . Other products, P 4 (HCCCNH (+)+H), P 5 (HCNCCH (+)+H), P 6 (H 2NCCC (+)+H), and P 8 (C 2H 2 (+)+HNC) may become feasible at high temperatures. Because the intermediates and transition states involved in the reaction HCN (+) + C 2H 2 are all lower than the reactant in energy, the title reaction is expected to be rapid, as is consistent with the measured large rate constant at room temperature. The present calculation results may provide a useful guide for understanding the mechanism of HCN (+) toward other pi-bonded molecules.  相似文献   

18.
By employing the high-resolution pulsed field ionization-photoelectron (PFI-PE)-photoion coincidence method, we have examined the unimolecular dissociation reaction of energy-selected C(2)H(3)Br(+) to form C(2)H(3) (+)+Br near its threshold. The analysis of the breakdown curves for C(2)H(3)Br(+) and C(2)H(3) (+) yields a value of 11.9010+/-0.0015 eV for the 0 K dissociative photoionization threshold or appearance energy (AE) for C(2)H(3) (+) from C(2)H(3)Br. This AE(C(2)H(3) (+)) value, together with the ionization energy (IE) for C(2)H(3)Br (9.8200+/-0.0015 eV) obtained by PFI-PE and threshold photoelectron (TPE) measurements, has allowed the determination of the 0 K dissociation energy (D(0)) for the C(2)H(3) (+)-Br bond to be 2.081+/-0.002 eV. The 0 K AE(C(2)H(3) (+)) from C(2)H(3)Br obtained in this study corresponds to DeltaH(f0) ( composite function )(C(2)H(3) (+))=1123.7+/-1.9 kJ/mol. Combining the latter value and the known DeltaH(f0) ( composite function )(C(2)H(3))=306.7+/-2.1 kJ/mol, we calculated a value of 8.468+/-0.029 eV for the IE(C(2)H(3)), which is in accord with the result obtained in the previous photoionization efficiency study. We have also carried out high-level ab initio calculations for the IE(C(2)H(3)) at the Gaussian-3 and the CCSD(T,full)/CBS level of theory. The CCSD(T,full)/CBS prediction of 8.487 eV for the IE(C(2)H(3)-->bridged-C(2)H(3) (+)) is in good agreement with the IE(C(2)H(3)) value derived in the present experiment. Combining the 0 K AE(C(2)H(3) (+))=11.9010+/-0.0015 eV and the IE(C(2)H(3))=8.468+/-0.029 eV yields the value of 3.433+/-0.029 eV for D(0)(C(2)H(3)-Br). We have also recorded the TPE spectrum of C(2)H(3)Br in the energy range of 9.80-12.20 eV. Members (n=5-14) of four autoionizing Rydberg series converging to the C(2)H(3)Br(+)(A (2)A(')) state are observed in the TPE spectrum. The analysis of the converging limit of these Rydberg series and the vibrational TPE bands for C(2)H(3)Br(+)(A (2)A(')) has provided more precise values for the nu(6) (+) (1217+/-10 cm(-1)) and nu(8) (+) (478+/-8 cm(-1)) modes and the IE (10.9156+/-0.0010 eV) for the formation of C(2)H(3)Br(+)(A (2)A(')) from C(2)H(3)Br.  相似文献   

19.
Nickel manganese succinato-hydrazinate (NiMn2(C4H4O4)3·6N2H4), has been synthesized for the first time by a novel precursor technique and characterized by IR, AAS and XRD. Thermal decomposition of the compound was studied from room temperature (rT) to 800°C by differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis besides isothermal mass loss studies. The compound was found to decompose autocatalytically, once ignited. TG-DSC shows two steps decomposition i.e. dehydrazination followed by decarboxylation. The infrared spectral studies show the N–N stretching frequency at 972 cm–1 suggesting a bidentate bridging structure of hydrazine molecule in (NiMn2(C4H4O4)3·6N2H4).  相似文献   

20.
A study of the multiphoton dissociation of H(2)(+) in intense laser field using the smooth exterior scaling method to calculate resonance states is presented. This method is very attractive as it does not disturb the interaction region. The wave functions calculated with this method provide indisputable proof in support of the mechanisms of the different phenomena happening during photodissociation. Wave functions corresponding to the "vibrationally trapped" (bond-hardening) states are found. A unequivocal mechanism for "bond-softening" is provided. It is observed that with an increase in intensity, the lifetime of low vibrational level increases. The mechanism for this novel phenomenon is also explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号