首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study explores the repassivation ability of a scratch in a chromate conversion coating (CCC) on aluminum alloy, AA2024‐T3, and hence evaluates the theory of migration of hexavalent chromium ions from the protected surface of the aluminum alloy to the exposed surface. To confirm that protection was indeed restored by hexavalent chromium ions, the repassivation of a scratch on pure aluminum exposed to a dichromate solution was studied. This forms the simplest subsystem model of the CCC on the alloy in which the CCC is replaced by pure hexavalent chromium and alloy with pure aluminum. Open‐circuit potential measurements, synchrotron infrared microspectroscopy (SIRMS) and secondary ion mass spectroscopy (SIMS) have been used judiciously to evaluate the repassivation behavior. Results indicate that the dichromate ions have high mobility. The slow migration of Cr(VI) ions from the protected surface to the scratch is observed to result in repassivation, as seen from the steady increase in the potential in 0.05 M NaCl solution. The results obtained from SIMS and SIRMS confirm the migration of the oxyanions from the protected region to the metal surface exposed by the scratch. The SIRMS results indicate the formation of an Al(III)–Cr(VI) complex, proposed and shown to be formed in the pits. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The corrosion behavior of pure (99.999) aluminum in 1 M HCl solution is studied. The regularities of local gas evolution on the surface of test specimen at the open-circuit potential are determined. A number of sites, where hydrogen gas evolves, varies with the time passing through a maximum. The sizes of bubbles prior to their detachment from the specimen surface are determined. The time dependences of gas bubble radius in the course of the bubble growth are obtained. From the experimental results, it is concluded that, at the sites of hydrogen gas evolution, the cathodic reaction prevails, whereas the anodic reaction (aluminum etching) proceeds at the rest specimen surface area. No pits form at the sites of hydrogen evolution during the experiments (up to 5 h). The quantitative analysis of the cathodic polarization curve enabled us to estimate the rate (the corrosion current density) of almost general corrosion after the decay of local gas evolution. The long-term experiments (for 2 months) showed that the pitting corrosion of pure aluminum takes place in 1 M HCl.  相似文献   

3.
Conclusions The combination of electrochemical techniques contributed to the knowledge of the corrosion mechanism of Co-Cr-Mo alloy under in vitro conditions. The X-ray diffraction technique permitted identification of some phases formed on the surface. The corrosion resistance of this alloy in 0.15 M NaCl was higher than the resistance of those presented by the cobalt and chromium under the same experimental conditions. Its corrosion mechanism involves the spontaneous formation of a film with dielectric properties, which protects the metal surface. Dedicated to the ninetieth anniversary of Ya.M. Kolotyrkin’s birth. This article was submitted by the authors in English.  相似文献   

4.
Quality control of fuel-related properties of biodiesel, such as thermal stability, is needed to obtain consistent engine performance by fuel users, since biodiesel is susceptible to auto-oxidation when exposed to air, light, and temperature during storage. In this work two pure standard reference materials of biodiesels produced from soy oil and animal feedstocks were studied. Differential scanning calorimetry and thermogravimetry measurements were performed and the analysis of the results revealed small temperature variations in the thermal events among the two standards, these differences are due mainly to their chemical composition, been highly influenced by the amounts of unsaturated esters.  相似文献   

5.
The most feasible alternative among fuels derived from biomass seems to be the biodiesel, having the required characteristics for a total or partial substitution of diesel oil. Therefore, the aim of this work is to evaluate the thermal and rheological behavior of the blends of diesel with the methanol biodiesel obtained from soybean oil, using B5, B15 and B25 blends. All thermogravimetric curves exhibited one overlapping mass loss step in the 35–280°C temperature range at air atmosphere and one step between 37–265°C in nitrogen. The rheological study showed a Newtonian behavior (n=1) for all blends.  相似文献   

6.
Meng  Xiangfeng  Hou  Lihuan  Jin  Hong  Li  Wenjuan  Wang  Shaoqi  Wang  Zhiping  An  Junwei  Wen  Chen  Ji  Guojun  Xu  Xiuqing  Zhou  Dan 《Journal of Solid State Electrochemistry》2023,27(9):2489-2497
Journal of Solid State Electrochemistry - Graphite/titanium oxide composite anti-corrosion coatings with five proportions of graphite were applied on the surface of aluminum alloy. The surface...  相似文献   

7.
8.
The stress relaxation of poly(isobutylene oxide) in air was measured while it was exposed to UV irradiation. It was found that the relative stress increased markedly and the polymer degraded extensively with UV irradiation time. In other crystalline polymers that degrade easily, e.g., polyoxymethylene and polypropylene, the relative stress increased somewhat. However, such behavior was not found in another crystalline polymer that was difficult to degrade, polyethylene. It was also found that the increase in the relative stress depended on the strain imposed on the sample, exposure temperature, the degree of crystallinity of the sample, the degree of initial degradation of the sample, and the degree of orientation of the chain molecules in the sample. However, these changes were insignificant in experiments performed under N2.  相似文献   

9.
Effect of ytterbium on the corrosion-electrochemical behavior of aluminum and an aluminum-manganese alloy in a neutral 3% solution of NaCl was studied.  相似文献   

10.
Specific features of the corrosion behavior of Ti-Nb alloys in a 40% H2SO4 solution were studied.  相似文献   

11.
Open-circuit potential (OCP), polarization curve, and electrochemical impedance spectroscopy (EIS) measurement were used to investigate the corrosion behaviors of high-strength low-alloy (HSLA) steel and mild steel in seawater. Both steels were used in the construction of a huge oil storage tank. The OCP results show that the HSLA steel quickly reached more negative E OCP values than the mild steel. Polarization curve results reveal that the HSLA steel exhibits higher corrosion currents and more negative corrosion potentials than the mild steel. EIS measurements reveal that both steels exhibit similar corrosion behaviors up to 144 h, one increased capacitance loop can be shown in EIS diagrams. The mild steel presents higher corrosion resistances than the HSLA steel at former stage, which is associated with the effect of the grain size. After 240 h of immersion, both steels present different corrosion behaviors. The EIS diagrams exhibit two capacitance arcs for the HSLA steel and one capacitance arc for the mild steel, which is due to the formation of intact corrosion scales on the electrode surface of the HSLA steel as to introduce a new reaction interface. The HSLA steel exhibits higher corrosion resistances than the mild steel at latter stage of experiment, which is ascribed to the synthetic actions of residual Fe3C and the protective property of corrosion products.  相似文献   

12.
Per- and polyfluoroalkyl substances (PFAS) have rapidly accumulated in the environment due to their widespread use prior to commercial discussion in the early 21st century, and their slow degradation has magnified concerns of their potential toxicity. Monitoring their distribution is, therefore, necessary to evaluate and control their impact on the health of exposed populations. This investigation evaluates the capability of a simple polymeric detection scheme for PFAS based on crosslinked, thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) hydrogels. Surveying swelling perturbations induced by several hydrotropes and comparable hydrocarbon analogs, tetraethylammonium perfluorooctane sulfonate (TPFOS) showed a significantly higher swelling ratio on a mass basis (65.5 ± 8.8 at 15°C) than any of the other analytes tested. Combining swelling with the fluorimetric response of a solvachromatic dye, nile red, revealed the fluorosurfactant to initiate observable aggregation (i.e., its critical aggregation concentration) at 0.05 mM and reach saturation (i.e., its charge neutralization concentration) at 0.5 mM. The fluorosurfactant was found to homogeneously distribute throughout the polymer matrix with energy dispersive X-ray spectroscopy, marking the swelling response as a peculiar nexus of fluorinated interfacial positioning and delocalized electrostatic repulsion. Results from the current study hold promise for exploiting the physiochemical response of PNIPAM to assess TPFOS's concentration.  相似文献   

13.
Precursor powders for yttrium aluminum garnet (YAG) were synthesized by solution combustion reactions (nitrate–glycine reaction with stoichiometric and sub-stoichiometric amount of fuel) and simple decomposition of nitrate solution. The TG-DTA, FTIR and XRD analyses of the precursors and the typical heat-treated samples were carried out to understand the processes occurring at various stages during heating to obtain phase pure YAG. Precursors from all the reactions exhibited dehydration of adsorbed moisture in the temperature range of 30 to 300°C. The precursor from nitrate–glycine reaction with stoichiometric amount of fuel (precursor- A) contained entrapped oxides of carbon (CO and CO2) and a carbonaceous contaminant. It exhibited burning away of the carbonaceous contaminant and crystallization to pure YAG accompanied by loss of oxides of carbon in the temperature ranges of 400 to 600 and 880 to 1050°C. The precursor from simple decomposition of nitrates (precursor-B) exhibited denitration cum dehydroxylation and crystallization in the temperature ranges of 300 to 600 and 850 to 1050°C. The precursor from nitrate–glycine reaction with sub-stoichiometric amount of fuel (precursor-C) contained entrapped carbon dioxide and exhibited its release during crystallization in the temperature range of 850 to 1050°C. This study established that, in case of metal nitrate–glycine combustion reactions, crystalline YAG formation occurs from an amorphous compound with entrapped oxides of carbon. In case of simple decomposition of metal nitrates, formation of crystalline YAG occurs from an amorphous oxide intermediate.  相似文献   

14.
Monte Carlo simulations are presented for two models of aluminum: an embedded-atom model and an explicit many-body model. Vapor/liquid coexistence curves are determined using Gibbs ensemble Monte Carlo simulations. The normal boiling points predicted by both models are somewhat higher (by about 10%) than the experimental value. Isothermal constant-stress simulations are used to simulate solid Al from 300 K to the triple point. The solid structures are at least metastable in the face-centered cubic configuration, and the specific heat is determined to be lower than the experimental value. The melting point for the embedded-atom model determined via thermodynamic integration along a pseudo-supercritical path is approximately 20% higher than the experimental value.  相似文献   

15.
The rate of anodic dissolution of ruthenium from the active coating of dimensionally stable anodes is studied as a function of time by a radiotrace technique in chloride and perchlorate solutions. In chloride solutions, the rate decreases by approximately four orders of magnitude and for a long (hundreds of hours) time. In the perchlorate solution, the dissolution rate changes only by hundredfold, for 25 min. These data confirmed the earlier conclusion that adsorbed chlorine inhibits anodic dissolution of the noble metal. The pH influence on the anode’s steady-state corrosion rate is studied. The corrosion rate sharply increases of pH increasing from 2 to 4 then slowly decreases to the values characteristic of the process rates in solutions of pH 2.  相似文献   

16.
Heat transfer to a single particle exposed to a thermal plasma   总被引:1,自引:0,他引:1  
This paper is concerned with an analytical study of the heat and mass transfer process of a single particle exposed to a thermal plasma, with emphasis on the effects which evaporation imposes on heat transfer from the plasma to the particle. The results refer mainly to an atmospheric-pressure argon plasma and, for comparison purposes, an argon-hydrogen mixture and a nitrogen plasma are also considered in a temperature range from 3000 to 16,000 K. Interactions with water droplets, alumina, tungsten, and graphite particles are considered in a range of small Reynolds numbers typical for plasma processing of fine powders. Comparisons between exact solutions of the governing equations and approximate solutions indicate the parameter range for which approximate solutions are valid. The time required for complete evaporation of a given particle can be determined from calculated values of the vaporization constant. This constant is mainly determined by the boiling (or sublimation) temperature of the particles and the density of the condensed phase. Evaporation severely reduces heat transfer to a particle and, in general, this effect is more pronounced for materials with low latent heat of evaporation.  相似文献   

17.
18.
Fatigue corrosion phenomenon is a form of degradation that is because of the combined occurrence of a mechanical cyclical stress and a corrosive environment. Fatigue corrosion can be an issue in commercial and military aircraft, and has the potential to affect the structural integrity and the useful life of an aerostructure. Although the distinct consequences of both fatigue and corrosion have been extensively documented for aluminum alloys, their synergistic action is not completely understood and continues to be an area of considerable scientific and industrial interest. In this paper, a novel approach is proposed and applied for monitoring the electrochemical behavior of different types of aluminum alloy samples while they are subjected to fatigue loading. Cyclic load experiments were conducted on bare 2024T3 and 6056T4 aluminum alloy samples in the presence of an aggressive aerated solution of 3.5% NaCl over a range of frequencies. The R‐ratio was 0. Two different aluminum alloys have been tested in both high‐ and low‐cycle fatigue. In the former case, the maximum stress experienced by the specimen is lower than the material yield strength, which means that the average expected number of cycles to failure is high; in the latter case, the maximum stress experienced by the specimen during the test is higher than the material yield strength, which means that the average expected number of cycles to failure is low. The open circuit potential(OCP) was monitored versus time during the tests described above. The observed OCP variations are interpreted as the occurrence of corrosion during crack initiation and propagation at the air formed oxide/solution interface film. As expected, there is a more pronounced influence of corrosion at lower fatigue frequencies. Crack propagation allows bulk material to be progressively more exposed to the aggressive environment, which stimulates accelerated crack propagation, resulting in a lower fatigue resistance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
利用磷钨酸(PTA)与1,2,3-三氮唑-4,5-二羧酸(TDA)在水溶液中的反应,合成了一种新的固体酸TDA-PTA,采用X射线粉末衍射(XRD)、扫描电镜(SEM)、红外光谱(FT-IR)、热重(TG)以及电位滴定等方法对其进行了表征,并以油酸与甲醇的酯化反应为探针反应,考察了其催化性能,探讨了催化剂用量、醇酸物质的量比、反应时间、反应温度以及催化剂重复利用次数等对产物收率的影响。结果表明,TDA-PTA不仅保留有磷钨酸典型的Keggin结构,而且具有较强的酸强度;经修饰后,催化剂具有规整的球形形貌,比表面积明显大于磷钨酸;TDA-PTA在油酸与甲醇的酯化反应中表现出了优良的催化活性,尤其显示出好的重复利用性,六次使用后,仍得到86.8%的油酸甲酯产率,催化剂的物相以及Keggin结构没有明显变化。  相似文献   

20.
Corrosion behavior of magnesium and its alloy in NaCl solution   总被引:3,自引:0,他引:3  
The electrochemical behavior of cast Mg, AZ91, and cast AZ91 in 0.1 M NaCl solution is investigated by measuring open-circuit potential (OCP), steady-state current-potential, and electrochemical impedance spectra (EIS). The similar electrochemical impedance behavior is found of three corrosion electrodes. There are two capacitances in high-and medium-frequency domains and one inductive loop or component in low-frequency domain. From equivalent circuit simulation, cast AZ91 has the worst corrosion resistance. The EIS results are in good agreement with those obtained by OCP and polarization curves. Based on the Cao theory, a simple corrosion mechanism is put forward, supplying a possible explanation for low-frequency inductive behavior for Mg and its alloy in NaCl solution at OCP. Published in Russian in Elektrokhimiya, 2007, Vol. 43, No. 7, pp. 878–885. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号