首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Core–shell Ag@Pt nanoparticles have been synthesised by the means of seed-growth reaction including reduction of PtCl42− with silver and replacing Ag atoms with Pt. Surface-enhanced Raman scattering (SERS) spectra of pyridine (which gives slightly different spectra when interacting with various metals) adsorbed on synthesised Ag@Pt clusters were measured. SERS measurements have revealed that deposition of the platinum layer causes near elimination of the spectral interferences from pyridine directly interacting with the silver core. The average SERS enhancement factor for pyridine adsorbed on the Ag@Pt clusters was estimated as equal to about 103–104, significantly higher than the SERS enhancement factor achievable on the pure platinum nanostructures. Using the silver core (instead of the previously used gold cores) allows for measurement of strong SERS spectra on the Pt covered nanostructures for the wider range of the excitation radiation. This procedure of platinum deposition was tested with various silver nanoparticles – produced with borohydride, citrate and citrate/borohydride methods – which substantially differ in size distribution. The application of formed Ag@Pt structures for obtaining intense Raman spectra for molecules adsorbed on only slightly modified platinum surfaces is discussed.  相似文献   

2.
How particles aggregate into an interesting dendritic structure has been the object of research for many years because of its importance in understanding physical processes involved and in designing novel materials. In this work, we for the first time describe an oriented attachment-based assembly mechanism for formation of different types of dendritic silver nanostructures at room temperature. It is found that the concentration of both AgNO(3) and p-aminoazobenzene (PA) molecules has a significant effect on the formation and growth of these novel nanostructures. Characterization by transmission electron microscopy (TEM) clearly shows that the dendritic silver nanostructures can be obtained through the preferential oriented growth along a crystallographically special direction. Interestingly, we observe that the oriented attachment at room temperature can also take place between relatively large single-crystalline silver particles with a diameter range from 20 to 60 nm, which may provide a new possibility for the design of novel metal nanostructures by using large metal nanoparticles as building blocks at room temperature. Moreover, a surface-enhanced Raman scattering (SERS) technique is used to investigate the role of PA molecules during the growth of the dendritic silver nanostructures.  相似文献   

3.
Electrochemical cycling of silver surfaces in the presence of the organophosphonates paraoxon and malathion leads to changes in the electrochemical response of silver and the formation of silver nanostructures. Adsorption of the organophosphonates onto the silver surfaces causes a significant reduction in the observed current response due to an increase in the charge transfer resistance. Surface enhanced Raman spectroscopy (SERS) measurements indicate that paraoxon adsorbs with no structural changes, while malathion decomposes and a thiophosphonate interacts with the surface. The SERS study of these adsorbates was carried out by changing the electrochemical conditions and the concentration of the organophosphonates. The size of the nanostructures greatly influences the SERS signal and it is observed that the strongest enhancement is observed for mid-sized nanostructures with a uniform thickness on the surface. The limit of detection was shown to be in the range of 10 nM to 10 pM for paraoxon and malathion, respectively.  相似文献   

4.
Surface-enhanced Raman scattering (SERS) enhancement and the reproducibility of the SERS signal strongly reflect the quality and nature of the SERS substrates because of diverse localized surface plasmon resonance (LSPR) excitations excited at interstitials or sharp edges. LSPR excitations are the most important ingredients for achieving huge enhancements in the SERS process. In this report, we introduce several gold and silver nanoparticle-based SERS-active substrates developed solely by us and use these substrates to investigate the influence of LSPR excitations on SERS. SERS-active gold substrates were fabricated by immobilizing colloidal gold nanoparticles on glass slides without using any surfactants or electrolytes, whereas most of the SERS-active substrates that use colloidal gold/silver nanoparticles are not free of surfactant. Isolated aggregates, chain-like elongated aggregates and two-dimensional (2D) nanostructures were found to consist mostly of monolayers rather than agglomerations. With reference to correlated LSPR and SERS, combined experiments were carried out on a single platform at the same spatial position. The isolated aggregates mostly show a broadened and shifted SPR peak, whereas a weak blue-shifted peak is observed near 430 nm in addition to broadened peaks centered at 635 and 720 nm in the red spectral region in the chain-like elongated aggregates. In the case of 2D nanostructures, several SPR peaks are observed in diverse frequency regions. The characteristics of LSPR and SERS for the same gold nanoaggregates lead to a good correlation between SPR and SERS images. The elongated gold nanostructures show a higher enhancement of the Raman signal than the the isolated and 2D samples. In the case of SERS-active silver substrates for protein detection, a new approach has been adopted, in contrast to the conventional fabrication method. Colloidal silver nanoparticles are immobilized on the protein functionalized glass slides, and further SERS measurements are carried out based on LSPR excitations. A new strategy for the detection of biomolecules, particularly glutathione, under aqueous conditions is proposed. Finally, supramolecular J-aggregates of ionic dyes incorporated with silver colloidal aggregates are characterized by SERS measurements and correlated to finite-difference time-domain analysis with reference to LSPR excitations. Figure SPR and SERS images for isolated, elongated and two-dimensional gold nanostructures  相似文献   

5.
A sandwich structured substrate was designed for quantitative molecular detection using surface enhanced Raman scattering (SERS), in which the probe molecule was sandwiched between silver nanoparticles (SNPs) and silver nanoarrays. The SNPs was prepared using Lee-Meisel method, and the silver nanoarrays was fabricated on porous anodic aluminum oxide (AAO) using electrodepositing method. The SERS studies show that the sandwich structured substrate exhibits good stability and reproducibility, and the detection sensitivity of Rhodamine 6G (R6G) and Melamine can respectively reach up to 10(-19) M and 10(-9) M, which is improved greatly as compared to other SERS substrates. The improved SERS sensitivity is closely associated with the stronger electromagnetic field enhancement, which stems from localized surface plasmon (LSP) coupling between the two silver nanostructures. Furthermore, the SERS intensity increased almost linearly as the mother concentration increased, which indicates that such a sandwich structure may be used as a good SERS substrate for quantitative analysis.  相似文献   

6.
Ag dendritic nanostructures were synthesized on fluorine-doped tin oxide covered glass sub-strates by the electrodeposition method. Results demonstrate that the size, diameter, crys-tallinity, and branch density of the Ag dendrites can be controlled by the applied potential,the surfactants and the concentration of AgNO3. Three kinds of typical silver dendrites were applied as substrates of the surface enhanced Raman scattering (SERS) and one of them was able to clearly detect rhodamine 6G concentrations up to 0.1 nmol/L. The differences of the SERS spectra at these Ag dendrites confirmed that the shapes and interparticle spacings have great effect on Raman enhancement, especially the interparticle spacings.  相似文献   

7.
Surface‐enhanced Raman spectroscopy (SERS) is an emerging technology in the field of analytics. Due to the high sensitivity in connection with specific Raman molecular fingerprint information SERS can be used in a variety of analytical, bioanalytical, and biosensing applications. However, for the SERS effect substrates with metal nanostructures are needed. The broad application of this technology is greatly hampered by the lack of reliable and reproducible substrates. Usually the activity of a given substrate has to be determined by time‐consuming experiments such as calibration or ultramicroscopic studies. To use SERS as a standard analytical tool, cheap and reproducible substrates are required, preferably with a characterization technique that does not interfere with the subsequent measurements. Herein we introduce an innovative approach to produce low‐cost and large‐scale reproducible substrates for SERS applications, which allows easy and economical production of micropatterned SERS active surfaces on a large scale. This approach is based on an enzyme‐induced growth of silver nanostructures. The special structural feature of the enzymatically deposited silver nanoparticles prevents the breakdown of SERS activity even at high particle densities (particle density >60 %) that lead to a conductive layer. In contrast to other approaches, this substrate exhibits a relationship between electrical conductivity and the resulting SERS activity of a given spot. This enables the prediction of the SERS activity of the nanostructure ensemble and therewith the controllable and reproducible production of SERS substrates of enzymatic silver nanoparticles on a large scale, utilizing a simple measurement of the electrical conductivity. Furthermore, through a correlation between the conductivity and the SERS activity of the substrates it is possible to quantify SERS measurements with these substrates.  相似文献   

8.
A high quality anodic aluminum oxide (AAO) template with ordered apertures about 50-80 nm was fabricated by anodizing aluminum in electrolytes through a two-step method, and silver nanowires with diameters from 40nm to 70nm were prepared on this AAO template by magnetron sputtering. On the glass covered with silver nanowires, high quality surface enhanced Raman scattering (SERS) spectra of sudan II (C18H16N2O) with enhancement factors of 105 were obtained. And comparison of SERS spectra on silver nanowires with the SERS spectra of silver colloids indicates that main enhanced mode is lightning rod effect of nanorods on the Sudan II/silver nanowires system.  相似文献   

9.
Via electroless metal deposition, well-defined silver dendrites and thin porous silicon (por-Si) layers are simultaneously prepared in ammonia fluoride solution containing AgNO3 at 50 °C. A self-assembled localized microscopic electrochemical cell model and a diffusion-limited aggregation mode are used to explain the growth of silver dendrites. The formation of silver dendritic nanostructures derives from the continuous aggregation growth of small particles on a layer of silver nanoparticles or nanoclusters (Volmer-Weber layer). Thin and homogeneous nanostructure por-Si layers display visible light-emission properties at room temperature. The investigation of the surface-enhanced Raman scattering (SERS) reveals that the film of silver dendrites on por-Si is an excellent substrate with significant enhancement effect.  相似文献   

10.
We describe a novel surface-enhanced Raman scattering (SERS) tag that is based on Au/Ag core-shell nanostructures embedded with p-aminothiophenol. The Au/Ag core-shell sandwich nanostructures demonstrate bright and dark stripe structure and possess very strong SERS activity. Under optimum conditions, the maximum SERS signal was obtained with a 10?nm thick Ag nanoshell, and the enhancement factor is 3.4?×?104 at 1077?cm?1. After conjugation to the antibody of muramidase releasing protein (MRP), the Au/Ag core-shell nanostructures were successfully applied to an SERS-based detection scheme for MRP based on a sandwich type of immunoassay.
Figure
A novel SERS tag of p-Aminothiophenol (pATP) embedded Au/Ag core-shell nanostructures were prepared by adding precursor solution (AgNO3) into the original Au nanoparticles (NPs) solution. The synthesized SERS tags, as a biosensers, were further applied to detect a biomarker protein of SS2  相似文献   

11.
Surface-enhanced Raman scattering (SERS) spectra of thiram (tetramethylthiuram disulfide), a dimethyl dithiocarbamate fungicide, were recorded after the adsorption on plasmonic silver nanowires from a system of water, organic solvent and nanoparticles. As organic solvents dichloromethane and 1-octanol were involved. A method for measuring the adsorption constant of thiram as a model molecule to the silver surface by studying its partition phenomena in a binary solvent system is presented. The method is based on the extraction of a hydrophobic molecule from an organic solvent by an aqueous suspension of silver anisotropic nanoparticles. The obtained results demonstrate the effectiveness of SERS methodology for the sensitive analysis of compounds with low aqueous solubility, and a reliable SERS spectrum of thiram was obtained with excellent signal/noise ratio at low concentrations. In addition, for vibrational assignments, Density Functional Theory (DFT) was used for the simulation of the Raman and SERS spectra of thiram and its complexes with silver considering the following two models: a single silver atom and an Ag20 cluster.  相似文献   

12.
The fouling and stability are two most critical limiting factors for practical applications of surface‐enhanced Raman scattering (SERS)‐based microfluidic electrophoresis device. Herein, we present a novel biomimetic nanoengineering strategy to achieve a SERS substrate featuring antifouling ability, good stability, and reliable quantitative capability. Typically, by employing tea polyphenol as the reducing agent, the substrate made of silver core‐gold shell nanostructures in situ grown on silicon wafer surface is fabricated. The core‐shell nanostructures are further embedded with internal standard molecules. Remarkably, the fabricated substrate preserves distinct SERS effects, adaptable reproducibility, and reliable quantitative ability even if the substrate is incubated with 15% H2O2, 13% HNO3, or 108 CFU/mL bacteria, or suffered from 12‐day continuous vibration at 250 rpm/min in PBS buffer. As a proof‐of‐concept application, the DNA‐functionalized substrate is capable of precise quantification of Hg2+ with a limit of detection down to ca. 1 pM even in sewage water.  相似文献   

13.
A new method to prepare plasmonically active noble metal nanostructures on large surface area silicon nanowires (SiNWs) mediated by atomic layer deposition (ALD) technology has successfully been demonstrated for applications of surface‐enhanced Raman spectroscopy (SERS)‐based sensing. As host material for the plasmonically active nanostructures we use dense single‐crystalline SiNWs with diameters of less than 100 nm as obtained by a wet chemical etching method based on silver nitrate and hydrofluoric acid solutions. The SERS active metal nanoparticles/islands are made from silver (Ag) shells as deposited by autometallography on the core nanoislands made from platinum (Pt) that can easily be deposited by ALD in the form of nanoislands covering the SiNW surfaces in a controlled way. The density of the plasmonically inactive Pt islands as well as the thickness of noble metal Ag shell are two key factors determining the magnitude of the SERS signal enhancement and sensitivity of detection. The optimized Ag coated Pt islands on SiNWs exhibit great potential for ultrasensitive molecular sensing in terms of high SERS signal enhancement ability, good stability and reproducibility. The plasmonic activity of the core‐shell Pt//Ag system that will be experimentally realized in this paper as an example was demonstrated in numerical finite element simulations as well as experimentally in Raman measurements of SERS activity of a highly diluted model dye molecule. The morphology and structure of the core‐shell Pt//Ag nanoparticles on SiNW surfaces were investigated by scanning‐ and transmission electron microscopy. Optimized core–shell nanoparticle geometries for maximum Raman signal enhancement is discussed essentially based on the finite element modeling.  相似文献   

14.
The functionality of silver nanostructures prepared by means of electrochemical deposition of silver into the pores of anodic alumina oxide (AAO) template was examined in correlation to electrodeposition conditions. The optical activity as well as the chemical separation ability of prepared nanostructured films was studied. The surface enhanced Raman spectroscopy (SERS) performance was evaluated by the signals of rhodamine 6G, 4‐aminothiophenol and 2,7‐dichlorfluorescein. Nanostructured silver substrates showed moderate surface enhancement for Raman scattering from adsorbed molecules with the magnitude of about 26.9. Moreover, a novel separation/pre‐concentration function of the silver nanowire structures was indicated. The identification and position detection of the model compounds were realised with SERS. The separation of single chemical components from the two‐component mixture over the examined silver nanostructured films was sufficiently approved. The results obtained demonstrated the potential of the prepared substrate as a SERS detection and separation probe for further implementation to any instrumentation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Surface-enhanced Raman scattering (SERS) has great potential as an analytical technique based on the unique molecular signatures presented even by structurally similar analyte species and the minimal interference of scattering from water when sampling in aqueous environments. Unfortunately, analytical SERS applications have been restricted on the basis of limitations in substrate design. Herein, we present a simple SERS substrate that exploits electroless deposition onto a nanoparticle-seeded polymer scaffold that can be fabricated quickly and without specialized equipment. The polymer-templated nanostructures have stable enhancement factors that are comparable to the traditional silver film over nanospheres (AgFON) substrate, broad localized surface plasmon resonance spectra that allow various Raman excitation wavelengths to be utilized, and tolerance for both aqueous and organic environments, even after 5 day exposure. These polymer-templated nanostructures have an advantage over the AgFON substrate based on the ease of fabrication; specifically, the ability to generate fresh SERS substrates outside the laboratory environment will facilitate the application of SERS to new analytical spectroscopy applications.  相似文献   

16.
Nanostructures made of magnetic cores (from Fe3O4) with attached silver plasmonic nanostructures were covered with a very thin layer of silica. The (Fe3O4@Ag)@SiO2 magnetic–plasmonic nanomaterial can be manipulated using a magnetic field. For example, one can easily form homogeneous layers from this nanomaterial using a very simple procedure: deposition of a layer of a sol of such a nanostructure and evaporation of the solvent after placing the sample in a strong magnetic field. Due to the rapid magnetic immobilization of the magnetic–plasmonic nanomaterial on the investigated surface, no coffee-ring effect occurs during the evaporation of the solvent. In this contribution, we report the first example of a magnetic, silver-based plasmonic nanomaterial for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Nanoresonators based on silver plasmonic nanostructures locally enhance the intensity of the exciting electromagnetic radiation in a significantly broader frequency range than the previously used magnetic SHINERS nanoresonators with gold plasmonic nanostructures. Example applications where the resulting nanomaterial was used for the SHINERS investigation of a monolayer of mercaptobenzoic acid chemisorbed on platinum, and for a standard SERS determination of dopamine, are also presented.  相似文献   

17.
在电化学工作站上以铜箔为工作电极,以硝酸银和PVP混合液作为前驱溶液,利用循环伏安法电辅助制备了纳米银,得到在铜箔上紧密均匀分布的纳米银颗粒聚集体作为SERS基底。通过X射线粉末衍射、X射线光电子能谱、扫描电子显微镜等表征手段,对铜箔上负载的银纳米颗粒进行了形貌和成分的表征,探讨了PVP及电辅助方法对纳米银形貌及基底SERS活性的影响。以4-巯基吡啶和罗丹明6G为探针溶液研究了制备基底的SERS活性,同时还对基底的均匀性进行了研究,结果表明所制备的SERS基底具有良好的性能。  相似文献   

18.
Plasmonic nanomaterials possessing large‐volume, high‐density hot spots with high field enhancement are highly desirable for ultrasensitive surface‐enhanced Raman scattering (SERS) sensing. However, many as‐prepared plasmonic nanomaterials are limited in available dense hot spots and in sample size, which greatly hinder their wide applications in SERS devices. Here, we develop a two‐step physical deposition protocol and successfully fabricate 3D hierarchical nanostructures with highly dense hot spots across a large scale (6 × 6 cm2). The nanopatterned aluminum film was first prepared by thermal evaporation process, which can provide 3D quasi‐periodic cloud‐like nanostructure arrays suitable for noble metal deposition; then a large number of silver nanoparticles with controllable shape and size were decorated onto the alumina layer surfaces by laser molecular beam epitaxy, which can realize large‐area accessible dense hot spots. The optimized 3D‐structured SERS substrate exhibits high‐quality detection performance with excellent reproducibility (13.1 and 17.1%), whose LOD of rhodamine 6G molecules was 10?9 M. Furthermore, the as‐prepared 3D aluminum/silver SERS substrate was applied in detection of melamine with the concentration down to 10?7 M and direct detection of melamine in infant formula solution with the concentration as low 10 mg/L. Such method to realize large‐area hierarchical nanostructures can greatly simplify the fabrication procedure for 3D SERS platforms, and should be of technological significance in mass production of SERS‐based sensors.  相似文献   

19.
We report on silver–gold core-shell nanostructures that contain Methylene Blue (MB) at the gold–silver interface. They can be used as reporter molecules in surface-enhanced Raman scattering (SERS) labels. The labels are stable and have strong SERS activity. TEM imaging revealed that these nanoparticles display bright and dark stripe structures. In addition, these labels can act as probes that can be detected and imaged through the specific Raman signatures of the reporters. We show that such SERS probes can identify cellular structures due to enhanced Raman spectra of intrinsic cellular molecules measured in the local optical fields of the core-shell nanostructures. They also provide structural information on the cellular environment as demonstrated for these nanoparticles as new SERS-active and biocompatible substrates for imaging of live cells.
Figure
The synthesis of MB embedded Ag/Au CS NPs ,and the results of these NPs were used in probing and imaging live cells as SERS labels  相似文献   

20.
The results of the search for the optimal experimental conditions for ultrasentitive chemical analysis of 1-naphthalenethiol (1-NAT) and 2-naphthalenethiol (2-NAT) using surface-enhanced Raman scattering (SERS) are discussed. The report begins with a review of the vibrational spectra, including infrared and Raman spectra of the target molecules, and the interpretation of the observed frequencies aided by local density functional theory (DFT) calculations at the B3LYP/6-311G(d,p) level of theory. Several metal nanostructures were tested for SERS activity, including island films and colloids of silver, gold and copper. Correspondingly, the most effective laser line for excitation in the visible and near infrared region was sought. The achieved detection limit for 1-naphthalenethiol, and for 2-naphthalenethiol, on silver nanostructures is in the zeptomole regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号