首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The microstructure of the catalyst layer in proton exchange membrane fuel cells (PEMFCs) greatly influences catalyst (Pt) utilization and cell performance. We demonstrated a functionally graded catalyst layer based on a double-layered carbon nanotube/nanofiber film- (buckypaper) supported Pt composite catalyst to approach an idealized microstructure. The gradient distribution of Pt, electrolyte and porosity along the thickness effectively depresses the transport resistance of proton and gas. A rated power of 0.88 W/cm2 at 0.65 V was achieved at 80 °C with a low Pt loading of 0.11 mg/cm2 resulting in a relatively high Pt utilization of 0.18gPt/kW. The accelerated degradation test of catalyst support showed a good durability of buckypaper support because of the high graphitization degree of carbon nanofibers.  相似文献   

2.
The possibility of controlling the state of platinum deposited on the support surface via minor changes in the catalyst preparation procedure is demonstrated using a series of highly dispersed Pt/γ-Al2O3 catalysts with different particle size of the active component. Dispersity, local structure and electronic state of supported platinum were examined by a combination of high resolution transmission electron microscopy and X-ray absorption spectroscopy (EXAFS/XANES). It was shown that various platinum species can be obtained on the surface of the support: bulk or surface Pt(II) or Pt(IV) oxides, mixed metal-oxide structures, bulk particles of metallic platinum, and two-dimensional surface Pt0 particles strongly interacting with the support.  相似文献   

3.
To develop better and cheaper electrocatalysts for the oxidation of methanol in direct methanol fuel cells, several combinations of a conductive polymer polyaniline (PANI) and dispersed metal particles such as Pt and Sn were examined. The anodic current for the methanol oxidation (i MeOH) showing the electrocatalytic activity of Pt particles was remarkably enhanced when the particles were dispersed on PANI films that should provide higher surface areas for the dispersed particles. The activity strongly depended on the morphology and the electric conductivity of the PANI films electropolymerized in five different acid solutions: H2SO4, HNO3, HClO4, HBF4, and HCl. The highest activity was achieved using the dispersed Pt particle on PANI film electropolymerized from H2SO4 polymerizing solution. In order to reduce the dispersed amount of the expensive Pt particles, other metal particles were pre-dispersed on the PANI film prepared from the H2SO4 polymerizing solution, and then Pt particles were dispersed on the film. Among the pre-dispersed metal particles attempted here (Sn, Cu, Cr, Ni, In, Co, Sb, Bi, Pb, and Mn), the highest activity was obtained with Sn particles. When the ratio of dispersed Pt to Sn particles ranges from 32:68 to 100:0, i MeOH is higher than that measured with the dispersed Pt particle on PANI films without the Sn particles. This means that the dispersed amount of the Pt particles could be reduced by utilizing dispersed Sn particles.  相似文献   

4.
Platinum (Pt) nanoparticles were synthesized inside a Nafion polyelectrolyte membrane for use as a catalyst membrane integrated layer in fuel cells. The integrated membrane was prepared by making use of the cation exchange between the tetraammineplatinum (II) cations ([Pt(NH3)4]2+) and sulfonic groups in the Nafion molecules, followed by film casting and chemical reduction. The synthesized Pt nanoparticles, which had a cubic shape with diameters of 11.5–14.5 nm, dispersed in the recast Nafion film, increased its proton conductivity and open circuit voltage compared with the pristine Nafion membrane. The Pt-incorporated membrane provided a 29% increment of the maximum power density, seemingly by oxidizing the crossover methanol passing through the proton-exchange membrane. At a high loading of Pt (over 3 wt.% in this study), the Nafion clusters were likely squeezed by the synthesized Pt nanoparticles so as to decrease the water uptake and proton conductivity. This hypothesis was also supported by the increased Ohmic resistance in the IV polarization curve.  相似文献   

5.
The kinetics of H2 desorption from the surface of a copper-platinum catalyst deposited on silica gel ([1 wt % Pt + 0.15 wt % Cu]/SiO2) and the kinetics of C6H12 dehydrogenation were studied. The effects of copper introduction in a platinum catalyst on the structural characteristics of platinum particles, the composition of their surface, and the effects of plasmochemical treatments on these parameters were studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The metal-H atom bond energies (E Pt-H) and the catalytic activity were found to increase in the presence of Cu. This was explained by the formation of new hydrogen adsorption centers (due to the Cu adatoms) and catalytic centers composed of Cu adatoms and carbon atoms. The mean diameter of Pt particles (D) increased twofold. The microstresses (ɛ) in the particles increased after the catalyst was treated with glow discharge plasma in Ar and O2 and with high-frequency plasma in H2 (HF-H2). The observed changes in the bond energy E Pt-H and kinetic parameters were explained by the increase in microstresses in Pt particles.  相似文献   

6.
The effects of Co alloying to Pt catalyst and Nafion pretreatment by NaClO4 solution on the rate-determining step (RDS) of oxygen reduction at Nafion-impregnated Pt-dispersed carbon (Pt/C) electrode were investigated as a function of the potential step ΔE employing potentiostatic current transient (PCT) technique. For this purpose, the cathodic PCTs were measured on the pure Nafion-impregnated and partially Na+-doped Nafion-impregnated Pt/C and PtCo/C electrodes in an oxygen-saturated 1 M H2SO4 solution and analyzed. From the shape of the cathodic PCTs and the dependence of the instantaneous current on the value of ΔE, it was confirmed that oxygen reduction at the pure Nafion-impregnated electrodes is controlled by charge transfer at the electrode surface mixed with oxygen diffusion in the solution below the transition potential step |ΔE tr| in absolute value, whereas oxygen reduction is purely governed by oxygen diffusion above |ΔE tr|. On the other hand, the RDS of oxygen reduction at the partially Na+-doped Nafion-impregnated electrodes below |ΔE tr| is charge transfer coupled with proton migration, whereas above |ΔE tr|, it becomes proton migration in the Nafion electrolyte instead of oxygen diffusion. Consequently, it is expected in real fuel cell system that the cell performance is improved by Co alloying since the electrode reaches the maximum diffusion (migration) current even at small value of |ΔE|, whereas the cell performance is aggravated by Nafion pretreatment due to the decrease in the maximum diffusion (migration) current.  相似文献   

7.
A novel Si-based micromachined electrode composed of polypyrrole (PPy)/Nafion® film and electrochemically deposited Pt nanocatalysts was prepared for the microfabricated fuel cell applications. In addition to its high surface area to host nanocatalyst particles, the PPy/Nafion® composite film offers good electron and proton conductivity and the fabrication of such films is largely compatible with the micromachining process. The resulted catalyzed microelectrodes exhibit high electrochemical active surface area and high catalyst utilization. The corresponding Si-based micro membrane–electrode-assembly demonstrates good cell polarization characteristics using the H2/O2 feed.  相似文献   

8.
The electrooxidationof “reduced” CO2 intermediate adsorbed at polycrystalline Pt was studied for comparison in 0.5 M H2SO4, 0.05 M HClO4 and 1 M KOH. The voltammograms showed a current peak multicity in 0.05 M HClO4 and in 1 M KOH. Current transients in 0.05 M HClO4 showed a complex decay at Eo, between 0.6 and 0.8 V. In 1 M KOH these transients showed a minimum and a maximum which shift in the time scale with Ead.The kinetic interpretation of the results was attempted considering a Temkin isotherm at low positive potentials. Tafel slopes obtained from the dependence of Ep vs. log υ are close to RT/F at high positive potentials. This value accounts for a chemical reaction as rds. Anion Adsorption at the polycrystalline Pt electrode would change the surface energy for Pt(OH) electroformation and hence it should influence the electrooxidation processes indirectly.  相似文献   

9.
The Iteraltive Extended Hückel Molecular Orbital method has been adapted to calculation of the properties of an electrode and compact layer. Predictions of the stablest orientations, on the Pt(111) surface of species such as H2O, Pt, OH?, H, and the halides, F?, Cl?, Br? and I?, based upon calculation of the total energy corresponding to various internuclear distances, are reported. The calculations correctly predict self-adsorption of Pt on the Pt(111) surface at the face-centered cubic closest-packing position. The H2O molecule is predicted to locate itself above three adjoining Pt atoms, with the O atom closest to the surface and the H atoms opposite the O. Similar results were obtained for OH? and the halides. Atomic H, however, is predicted to drop into the plane of centers of the Pt surface atoms, where it would lie between, three adjacent Pt atoms. Application of the method to electrode studies requires only modest amounts of computer time but produces surprisingly reliable qualitative predictions. Compulation of electrochemical quantities such as charge, differential capacitance, surface tension and potential energy as a function of electrode potential will be described in future work.  相似文献   

10.
Reaction of salicyldehyde thosemicarbazone (H2L1), 2-hydroxyacetophenone thiosemicarbazone (H2L2) and 2-hydroxynapthaldehyde thiosemicarbazone (H2L3) (general abbreviation H2L, where H2 stands for the two dissociable protons, one phenolic proton and one hydrazinic proton) with K2[PtCl4] afforded a family of polymeric complexes of type [{Pt(L)}n]. Reaction of the polymeric species with two monodentate ligands (D), viz. triphenylphosphine (PPh3) and 4-picoline (pic), yielded complexes of the type [Pt(L)(D)]. These mixed-ligand complexes were also obtained from the reaction of the thiosemicarbazones with [Pt(PPh3)2Cl2] and [Pt(pic)2Cl2]. The crystal structure of [Pt(PPh3)(L2)] has been determined. The thiosemicarbazone ligands are coordinated, via dissociation of the two protons, as dianionic tridentate O,N,S-donors. The [Pt(L)(D)] complexes show characteristic 1H NMR spectra and intense absorptions in the visible and ultraviolet region. They also fluoresce in the visible region at ambient temperature.  相似文献   

11.
Pt nanospheres with an average diameter of 60±10 nm have been successfully synthesized at room temperature through a facile polyoxometalate(POM)-assisted process. Characterization by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) clearly showed that these Pt nanospheres consisted of 2-7 nm Pt nanodots. During the formation of such unique nanostructures, POMs were found to serve as both catalyst and stabilizer. The size of the as-synthesized Pt nanospheres could be controlled solely by adjusting the molar ratio of POMs to H2PtCl6. A possible formation mechanism based on POMs-mediated electron transfer from ascorbic acid (AA) to PtCl62− and AA-assisted aggregation was tentatively proposed to rationalize the formation of such nanostructures. Importantly, these specific Pt nanospheres exhibited good electrocatalytic activity towards the oxidation of methanol, making them promising for applications in direct methanol fuel cells.  相似文献   

12.
Nano-catalyzed membrane with different platinum (Pt) catalyst loadings (0.25 to 1 mg cm?2) was investigated for proton exchange membrane fuel cell applications, and the Pt loading on the Nafion membrane was prepared by non-equilibrium impregnation reduction method. The prepared catalyzed membranes were subjected to various characterisations, namely, X-ray diffraction, high-resolution scanning electron microscopy (HRSEM) with energy-dispersive X-ray, cyclic voltammetry, polarisation and electrochemical impedance spectroscopy. The polycrystalline fcc cubic structure and the particle size of Pt catalyst were estimated by X-ray diffraction analysis. The membrane with 0.4 mg cm?2 of Pt loading exhibits a favourable surface morphology which is confirmed by HRSEM image. Electrochemical investigations were clearly evident that the uniform distributions of Pt particles with fine pores on Nafion membrane facilitated the three-phase boundary which leads to a better cell performance. Electrochemical impedance spectroscopy demonstrated that the cell constructed using 0.4 mg cm?2 of platinum-loaded membrane has lower resistance than the other Pt loading.  相似文献   

13.
The distribution of NO molecules desorbed from a Pt(111) surface due to valence electron excitation over rotational energy levels N(J) is analyzed using a simple impulse-induced model. A linear dependence is found between lnN(J) and (Er)1/2, where Er is the rotational energy of the desorbed molecules. The lifetime of the excited state and the critical time of residence in the excited state estimated using this dependence are found to be close to one another (~10?15 s). The frequency and amplitude of the tilting vibrations of the adsorbed molecules in the excited state are estimated.  相似文献   

14.
《Journal of Energy Chemistry》2017,26(6):1160-1167
The changeable structure of 2 D graphene nanosheets makes the Pt-based nanoparticles(NPs) possess a low efficiency toward oxygen reduction reaction(ORR) and a short lifetime for proton exchange membrane fuel cells. Thus, a unique Ti C@graphene core-shell structure material with low surface energy is designed and prepared by an in situ forming strategy, and firstly applied as a stable support of Pt NPs.The as-prepared Pt/GNS@Ti C catalyst presents a high activity. Especially, its ORR stability is remarkably improved. Even after 15000 potential cycles, the half-wave potential and mass activity toward ORR have almost no change. This can be attributed to that the graphene nanosheet existing in a sphere shape effectively avoids the restacking or folding caused by the giant surface tension in 2 D graphene nanosheets,impeding the decrease of the triple-phase boundary on Pt NPs. Significantly, the power density of fuel cells with our novel catalyst reaches 853 m V cm~(–2) under a low Pt loading(0.25 mg Pt cm~(–2)) and H_2/Air conditions. These indicate the new ceramic@graphene core-shell nanocomposite is a promising application in fuel cells and other fields.  相似文献   

15.
We show that the addition of white dextrin during the electrochemical deposition of platinum nanostructures (nano-Pt) on a glassy carbon electrode (GCE) results in an electrochemically active surface that is much larger than that of platinum microparticles prepared by the same procedure but in the absence of dextrin. The nano-Pt deposits are characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy, and electrochemical methods. The SEM images reveal deposits composed of mainly nanoparticles and short nanorods. The GCE was applied as a novel and cost-effective catalyst for methanol oxidation. The use of nano-Pt improves the electrocatalytic activity and the stability of the electrodes.
Figure
(A) SEM image of the Pt nanostructures. (B) Electrochemical responses of the Pt nanostructures (solid line) and Pt microparticles (line) in 1.4 M CH3OH + 0.5 M H2SO4 solution at υ?=?50 mV s?1. Novel Pt nanostructures were electrodeposited at the surface of glassy carbon electrode in the presence of white dextrin as an additive, which exhibit high electrocatalytic activity towards methanol oxidation due to their highly electrochemically active surface area.  相似文献   

16.
We explore here the ability of ruthenium hydroxo species to undergo spontaneous deposition on Pt nanoparticles and to form colloidal solutions of oxoruthenium-protected (-stabilized) nanoparticles of Pt. These particles can be spontaneously attracted to carbon substrates, and they form ultrathin self-assembled films. Fabrication of the multilayer network films on electrodes has been achieved by linking the positively charged oxoruthenium-covered Pt clusters with heteropolyanions of tungsten. By repeated alternate treatments in a solution of phosphododecatungstate (PW12O403–) and in a colloidal suspension of oxoruthenium-protected (-stabilized) Pt nanoparticles, the film thickness can be increased systematically (layer by layer) to form stable three-dimensional assemblies on carbon electrodes. It is apparent from cyclic voltammetric and chronoamperometric measurements (that were performed at 20 and 60 °C) that the resulting hybrid films show attractive properties towards the oxidation of methanol at fairly low potentials (0.25–0.4 V versus the saturated calomel electrode). With approximately the same loading of oxoruthenium-covered Pt nanoparticles and under analogous conditions, linking or derivatizing the nanoparticles with phosphotungstate leads to the systems higher electrocatalytic activity. It is possible that, in addition to ruthenium hydroxo species, PW12O403– exhibits an activating effect on dispersed Pt particles. An alternative explanation may involve the possibility of different morphologies of the catalytic films in the presence and absence of phosphotungstate anions.Dedicated to Zbigniew Galus on the occation of his 70th birthday  相似文献   

17.
The interaction of NO2 with model catalysts prepared by platinum evaporation onto the surface of highly oriented pyrolytic graphite has been investigated at room temperature and a pressure of 3 × 10?6 Torr by X-ray photoelectron spectroscopy and scanning tunneling microscopy. In the catalyst containing only small (<2.5 nm) platinum particles, these particles oxidize to PtO and PtO2. The action of NO2 on the graphite support and on the graphite-supported Pt catalyst causes graphite oxidation. The oxygen concentration in the model catalyst is higher than on the support. This is supposed to be due to the spillover of oxygen atoms from platinum particles to graphite.  相似文献   

18.
Lead dioxide (PbO2) was compared to platinum (Pt) as a cathode catalyst in a double-cell microbial fuel cell (MFC) utilizing glucose as a substrate in the anode chamber. Four types of cathodes were tested in this study including two PbO2 cathodes fabricated using a titanium base with butanol or Nafion® binders and PbO2 paste, one Pt/carbon cathode fabricated using a titanium base with a carbon–Pt paste, and a commercially available Pt/carbon cathode made from carbon paper with Pt on one side. The power density and polarization curves were compared for each cathode and cost estimates were calculated. Results indicate the PbO2 cathodes produced between 2 and 4× more power than the Pt cathodes. Furthermore, the PbO2 cathodes produced between 2 and 17× more power per initial fabrication or purchase cost than the Pt cathodes. This study suggests that cathode designs that incorporate PbO2 instead of Pt could possibly improve the feasibility of scaling up MFC designs for real world applications by improving power generation and lowering production cost.  相似文献   

19.
The compounds trans-[Pt(OCHO)R(PPh3)2] (R = C6Cl5; 2,3,4,6-C6HCl4; 2,3,4,5-C6HCl4; 2,5-C6H3Cl2) have been prepared by treatment of [PtIR(PPh3)2] with AgClO4 followed by reaction with NaOCHO in methanol. The cis isomers have been obtained by the direct reaction of HCO2H with compounds containing PtHg bonds. For these and the analogous compounds containing C6F5 ligands, the dependence of J(31P195Pt) on R has been studied, and the effects of cis-R shown to be in the opposite direction from those of trans-R ligands.  相似文献   

20.
A biomimetic nickel bis‐diphosphine complex incorporating the amino acid arginine in the outer coordination sphere was immobilized on modified carbon nanotubes (CNTs) through electrostatic interactions. The functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2/2 H+ interconversion from pH 0 to 9, with catalytic preference for H2 oxidation at all pH values. The high activity of the complex over a wide pH range allows us to integrate this bio‐inspired nanomaterial either in an enzymatic fuel cell together with a multicopper oxidase at the cathode, or in a proton exchange membrane fuel cell (PEMFC) using Pt/C at the cathode. The Ni‐based PEMFC reaches 14 mW cm−2, only six‐times‐less as compared to full‐Pt conventional PEMFC. The Pt‐free enzyme‐based fuel cell delivers ≈2 mW cm−2, a new efficiency record for a hydrogen biofuel cell with base metal catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号