首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional (3D) accessible pore structures (Imm space groups) of continuous mesoporous silica SBA-16 thin films have been prepared by a dip-coating technique in nonaqueous media under acidic conditions on indium-tin oxide glass (ITO). The films are oriented with the (111) crystal plane perpendicular to the surface of the film. On one hand, deposition of iron metal into the mesopores of SBA-16 films was achieved by using an electrochemical method. The Fe2O3 nanowire arrays were synthesized. The crystalline structures of porous Fe2O3 nanowires and nanorods were studied via TEM, SEM, and XRD. On the other hand, a small amount of Fe was deposited into the pores of the SBA-16 thin film as a catalyst, and carbon nanotube arrays formed inside the pores of SBA-16 film were fabricated by catalytic decomposition of acetylene at 700 degrees C. The second-order template synthesis method for preparing the ordered array of carbon nanotubes filled with Fe has been used. The carbon nanotubes are very uniform in diameter and length and are aligned vertically with respect to the SBA-16 film.  相似文献   

2.
Using a simple electrochemical depositing process, iron and cobalt‐doped diamond‐like carbon (DLC) films were deposited on Si (100) substrates. The results showed that metallic elements were inhomogeneously doped into highly cross‐linking amorphous carbon matrix, forming the typical nanocrystalline/amorphous nanocomposite structure, and simultaneously the microsturcture of amorphous carbon was changed by the doping of metals. Field emission performance showed that the incorporation of iron and cobalt effectively decreases the threshold field from 13.5 V/µm to 8.0 V/µm and 6.5 V/µm, respectively, and a highest current density of the Co‐DLC film was about 1.2 mA/cm2 at the electric field of 23.5 V/µm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Four different kinds of diamond-like carbon (DLC) coating morphologies on the surface of silicon films were prepared directly on a copper foil by using radio frequency plasma-enhanced chemical vapor deposition at 200 °C. A thin double layer film consisting of DLC (60 nm) and silicon film (250 nm) was fabricated for use as the anode material of lithium secondary batteries, and its electrochemical performance was also examined with special attention being paid to the surface coverage of the DLC film. The full coverage of silicon by the DLC film resulted in poor capacity due to the ensuing low reactivity with the lithium ions. On the other hand, the partial coating of the DLC film on the silicon film not only reduced the capacity fading, but also increased the discharge capacity during the charge/discharge cycles. These results indicated that the good dispersion of the DLC coating, obtained by using a smaller coating sector on the silicon film, improved the integrity of the electrode structure, thus giving higher capacities and reduced capacity fading.  相似文献   

4.
《Solid State Sciences》2012,14(6):715-718
ZnO nanoparticles-embedded diamond-like amorphous (DLC) carbon films have been prepared by electrochemical deposition. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) results confirm that the embedded ZnO nanoparticles are in the wurtzite structure with diameters of around 4 nm. Based on Raman measurements and atomic force microscope (AFM) results, it has been found that ZnO nanoparticles embedding could enhance both graphitization and surface roughness of DLC matrix. Also, the field electron emission (FEE) properties of the ZnO nanoparticles-embedded DLC film were improved by both lowering the turn-on field and increasing the current density. The enhancement of the FEE properties of the ZnO-embedded DLC film has been analyzed in the context of microstructure and chemical composition.  相似文献   

5.
以甲醇有机溶液作碳源,应用直流脉冲电化学沉积方法,在不锈钢表面制备了类金刚石碳薄膜.用原子力显微镜、扫描电镜、拉曼光谱仪和傅立叶红外吸收光谱表征该薄膜的表面形貌和结构.结果表明:经电化学沉积的含氢类金刚石碳薄膜均匀、致密,表面粗糙度小;Raman光谱在1 332.51cm-1处有一强的谱峰,与金刚石的特征谱峰相重合.加入活性添加剂,增加了电流密度,使沉积速率提高到0.5μm/h.  相似文献   

6.
Super‐thick diamond‐like carbon (DLC) film is a potential protective coating in corrosive environments. In the present work, three kinds of DLC films whose thickness and modulation periods are 4 µm and 3, 21 µm and 17 and 21 µm and 7, respectively, were fabricated on stainless steel. The effect of different thickness and modulation periods on corrosion and tribocorrosion behaviour of the DLC‐coating stainless steel was investigated in 3.5 wt% NaCl aqueous solution by a ball‐on‐flat tribometer equipped with a three‐electrode electrochemical cell. The DLC‐coating stainless steel served as a working electrode, and its OCP and potentiodynamic polarization were monitored before and during rubbing. The wear–corrosion mechanism of the DLC films was investigated by SEM. The results showed that the increasing thickness can prolong significantly lifetime of DLC films in NaCl aqueous solution. In particular, the modulation period has a significant impact on the tribocorrosion resistance of the DLC super‐thick films. The study suggested that the increasing thickness of compressive stress layer could suppress film damage by reducing crack propagation rate. Thus, the super‐thick DLC film with thickness of 21 µm and 7 periods presented the best tribocorrosion resistance among all studied films. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Diamond like carbon (DLC) coatings are well established for multiple applications. The electrical conductivity of DLC or amorphous carbon can be influenced by several orders of magnitude via doping with different metals. Depending on the deposition process hydrogen may be incorporated as well, thereby decreasing the conductivity. Recent investigations of DLC disclose nice piezoresistive properties.Our work was focused on Ni:a-C:H thin films on different substrates by reactive sputtering from a nickel target. Several carbon precursors were added to the sputtering gas to create an amorphous carbon hydrogen network with embedded crystal clusters. In order to optimize the piezoresistive properties we varied various process parameters. The piezoresistive response was monitored by measuring the resistance change during bending. Our Ni:a-C:H films develop gauge factors of approx. 12 in a wide range of process parameters.For sensor applications the temperature coefficient of resistance (TCR) is important as well. It depends on the metal concentration in the thin film and can be adjusted by the concentration of the incorporated nickel. It can be set to approximately zero in a wide temperature range of 80–400 K. The combination of a high gauge factor and a very small TCR is achieved and described in this paper.XRD measurements reveal nickel or nickel carbide clusters with diameters of approx. 8–30 nm depending on the metal concentration. The clusters crystallize in the hexagonal hcp structure which could be transformed into the cubic fcc structure of nickel by thermal annealing in a vacuum.  相似文献   

8.
毛岳忠  田师一  胡晓晖  邓少平 《应用化学》2010,27(10):1117-1123
综述了类金刚石薄膜及其修饰的传感器特性以及制备工艺,介绍了类金刚石薄膜修饰的传感器在生物检测、电化学微重力测量、痕量金属检测、氢离子选择场效应晶体管和气体检测等领域的应用,并对类金刚石薄膜修饰传感器在电化学相关领域的应用进行了展望。  相似文献   

9.
Multilayer graphene oxide nanosheets were fabricated using commercially available expanded graphite by simple ultrasonic treatment and then were incorporated into the amorphous carbon matrix as fillers by electrochemical deposition. The electrical conductivity of the films was strongly improved due to the contribution of the multilayer graphene oxide sheets. Moreover, the Young’s modulus, hardness and elastic recovery of the composite films were measured to be about 171.1 GPa, 10.1 GPa and 81.4%, respectively, compared to 137.4 GPa, 5.1 GPa and 44.3% of undoped a-C:H films prepared at the same conditions. Additionally, the friction coefficient was tested to be 0.15 (0.5 N, 2 Hz) and the antiwear life was prolonged to about 200 s while the undoped DLC films obtained at the same condition were easy to be frazzled.  相似文献   

10.
Phosphorus doped diamond-like carbon (DLC) films were firstly synthesized by the electrolysis of methanol-Triphenylphosphorus (PPh3) solution under high voltage, atmospheric pressure and low temperature. The microstructure and morphology of the as-deposited films were analyzed by Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The measurements results suggested that phosphorus doping enhanced the carbon films graphitization and the doped phosphorus existed mainly in CP bonds with the P/C ratio of 0.034. The P-DLC films have larger surface roughness compared to the DLC film. Moreover, the formation of P-DLC films in liquid-phase electrodeposition was via the reactions of the –CH3 and –P groups to form CPx network.  相似文献   

11.
A detailed characterization of platinum- and gold-diamondlike carbon (DLC) nanocomposite films deposited onto silicon substrates is presented. A modified pulsed laser deposition (PLD) technique was used to incorporate noble metal nanoclusters into hydrogen-free DLC films. Several analytical techniques, including transmission electron microscopy, atomic force microscopy, Rutherford backscattering spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation testing, were used to investigate these thin films in an effort to determine their physical and electrochemical properties. Rutherford backscattering spectroscopy indicated that the gold- and platinum-DLC films contain metal concentrations between three and 36 atomic percent. Cross-sectional transmission electron microscopy revealed that metal is present as arrays of noble metal islands embedded within the DLC matrix, while atomic force microscopy provided evidence of target splashing. In addition, due to the inclusion of metal, metal-DLC thin films exhibited greater conductivity than their metal-free counterparts. The electrochemical properties were studied using quasi-reversible redox couples and correlated to the metal concentration. Finally, the influence of the layer's composition on the electron-transfer kinetics and the achievable working potential window is discussed. The results discussed herein suggest that metal-DLC thin films grown by pulsed laser deposition present a promising alternative electrode material for electrochemistry.  相似文献   

12.
铁是地球上最丰富的元素之一,它在生命反应中起到至关重要的作用.目前,铁基催化剂广泛应用于合成氨、费托合成、NOx的选择性催化还原等.最近,铁因其含量丰富、价格低廉、无毒等优势而在多相催化方面引起了重点关注.最新研究发现,铁基催化剂在甲烷直接偶联制乙烯、氧还原以及芳硝基化合物的选择性加氢等领域具有突出表现,其中芳硝基化合物选择性加氢是一类具有重要应用前景的反应,这是因为苯胺(AN)是一种重要的精细化学品和有机中间体,广泛用于医药、染料、农药等行业,苯胺的年产量超过了400万吨,目前使用的催化剂主要有Raney Ni、负载镍、Ru/SnO2及少量铂碳、钯碳催化剂.但是,在Ni基催化剂上,硝基苯加氢主要经过间接缩合途径,同时会伴有氧化偶氮苯(AOB)、偶氮苯(AB)和氢化偶氮苯(HAB)等副产物生成,这些高沸点的副产物会带来一系列问题,如产物分离困难、产品纯度较低以及催化剂失活等.在这种情况下,为了加速苯胺生成,工业上一般采用过量的Raney Ni催化剂.贵金属(如Pt,Pd和Ru等)对催化芳硝基化合物加氢具有极高的活性,且苯胺的生成主要经过直接加氢途径.然而,由于成本过高,贵金属催化剂的大规模应用还存在一定的困难.本文采用简易的方法制备了一种铁基催化剂,在这个催化剂中氧化铁纳米颗粒被碳膜包覆并嵌入至平板碳中(Fe2O3@G-C).该催化剂由活性炭、苯胺及醋酸亚铁热解所得.通过扫描电镜(SEM)、拉曼光谱(Raman)及X射线衍射(XRD)分析,我们证实在原始碳颗粒上形成了新的碳膜.同时高倍透射电镜图也清楚地揭示了氧化铁纳米颗粒被碳膜包覆的结构.实验发现,Fe2O3@G-C-900催化剂(900oC热解所得)在芳硝基化合物选择性加氢反应中具有很高的活性.在2 MPa H2,70oC条件下反应2 h,硝基苯(NB)转化率达到95.4%,苯胺选择性达到99.1%,远远高于其他载体(活性炭、SiO2、Al2O3和MgO)负载的铁基催化剂.表征结果发现,Fe2O3@G-C-900催化剂的高活性可能与其具有较大的比表面积(573.7 m2/g)、孔体积(0.22 cm3/g,孔径小于2 nm)、高度分散的氧化铁纳米颗粒以及氧化铁纳米颗粒和其表面碳膜的协同作用密切相关.此外,催化剂中引入的氮原子不仅可以在包覆的碳膜上形成缺陷,也能进一步增强包覆在氧化铁纳米颗粒表面的碳膜的催化活性.通过对Fe2O3@G-C-900催化剂在硝基苯加氢反应中的循环使用活性的考察,发现该催化剂在循环使用5次后,仍具有良好的活性.更重要的是,在Fe2O3@G-C-900催化剂上硝基苯的加氢主要是直接途径,反应中没有高沸点AOB,AB和HAB等副产物生成.鉴于Fe2O3@G-C-900催化剂对NB加氢具有优异的活性,我们还进行了一系列含有不同取代基团的芳硝基化合物的加氢实验,发现对位取代的底物相对于间位及邻位的底物更容易发生加氢还原反应,这应归因于该催化剂的孔径较小(0.52 nm).这些研究方法可以扩展至其他金属催化剂的制备,以促进高效益和可持续的工业生产的发展.  相似文献   

13.
采用热丝化学气相沉积法先在铁箔上沉积了致密的碳纤维膜,后通过加热渗硫法制得硫/碳纤维复合膜,并将其用作锂硫电池正极材料。通过扫描电子显微镜和X射线衍射表征膜的形貌和结构,采用恒流充放电法和阻抗测量法测试复合膜的电化学性能。结果表明,随热丝与铁箔基底间距减小,碳纤维膜致密度先升高后降低;随H2与(Ar+C3H6O)的体积流量比减小,碳纤维膜致密度升高。当丝基距为6 mm,流量比为30/40时,铁箔上沉积了厚度为50μm的致密碳纤维膜,其中碳纤维有良好的垂直取向性和较高结晶度。在硫/碳纤维复合膜正极中,密集的碳纤维形成均匀分布且垂直取向性良好的导电骨架,当电流密度为0.4 mA.cm-2时,硫/碳纤维复合膜正极的初次放电比容量为1 128 mAh.g-1,50次循环后的放电比容量为811 mAh.g-1。  相似文献   

14.
Carbon film coatings have been produced by a hot‐wall chemical vapor deposition (CVD) method under moderate conditions from pyrolysis of a mixture of propane and argon on an Fe(110) substrate at temperatures of 800–900 °C for different deposition times. The effects of temperature and reaction time on the growth of the carbon films were studied. Field‐emission scanning electron microscopy (FESEM), Raman microscopy, Auger electron spectroscopy (AES) and x‐ray diffraction methods have been performed to study the surface morphologies, growth features and microstructures of the carbon film coatings. The FESEM analyses indicated that carbon films on an Fe substrate consisted of flat‐layer and filamentous morphologies. Raman and AES analyses showed that the carbon initially was crystalline but the degree of disorder in the top layer of the carbon film increased with increasing deposition temperature. High‐resolution transmission electron microscopy studies are also in agreement with Raman results. The same trend was observed when the deposition time was increased from 5 to 30 min. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Present study describes the synthesis of mixed oxide films of manganese and vanadium by electrochemical pulsed deposition technique on a glassy carbon electrode (GCE) modified with multiwall carbon nanotubes (MWCNT). The film was further decorated with gold nanoparticles to enhance the reduction signal of dissolved oxygen in pH 5.17 acetate buffer solution. All of the electrochemical synthesized modified electrodes have been characterized with Scanning electron microscopy(SEM), High‐resolution transmission electron microscopy (HRTEM), X‐Ray photoelectron spectroscopy (XPS), X‐Ray diffraction (XRD) techniques. The electrode obtained (AuNPs/MnOx?VOx/CNT/GCE) was utilized as a platform for glucose biosensor where the glucose oxidase enzyme was immobilized on the composite film with the aid of chitosan and an ionic liquid. The electrochemical performance of the biosensor was investigated by cyclic voltammetry and the relative parameters have been optimized by amperometric measurements in pH 5.17 acetate buffer solution. The developed biosensor exhibited a linear range for glucose between 0.1–1.0 mM and the limit of detection was calculated as 0.02 mM.  相似文献   

16.
In this work, we report an unexpected but significant improvement of the redox behavior of conducting polyaniline (PAN) films by trapping intrinsically nonconducting poly(vinyl alcohol) (PVA) in the matrix of the polymer acting as stiffening and/or cross-linking agents. Film structural stiffening of PAN/PVA inclusion was studied in relation to film compositional dynamics. PAN and PAN/PVA composite films were potentiodynamically deposited using high-frequency electrochemical quartz crystal microbalance under electrochemical potentiodynamic control. From the simultaneously obtained measurements of nanogravimetric and cyclic voltammetric data, it has been found that the presence of PVA in the deposition solution increased the rate of PAN film growth as a function of PVA concentration. Characterization of the resultant composite films in monomer-free acidic electrolyte solutions showed significantly enhanced redox behavior of PAN/PVA composite films (with different PVA contents) compared to pure PAN by a factor of ~2–4. For the study of structure–composition relationships of composite polymer films, fluxes of instantaneous mobile species dynamics (ion/solvent) as a function of film redox conversion and potential cycling were correlated with film structural stiffening and the observed unusual redox enhancement of PAN/PVA composite films. Using various experimental timescales, we were able to resolve bound (associated with ion transfer) and free solvent compositional dynamics (associated with thermodynamic activity balance).  相似文献   

17.
Composite materials of Prussian blue–polypyrrole (PB/PPy) on the surface of indium tin oxide (ITO)-coated glasses were obtained via one-step chemical (redox) and one-stage electrochemical procedures in mixed solution of iron (III), hexacyanoferrate (III), and pyrrole with various concentration ratios of components in nitrate supporting electrolyte. Electrochemical stability of composite films depends on the amount of Py in synthetic solution, whereas color contrast coefficient values depend on the type of synthetic procedure. PB/PPy film electrochromic response (tested by spectroelectrochemical potentiodynamic measurements) was compared with response of both pure PB and pure PPy films. It was shown that degradation of composite films occurs due to PB component instability in Prussian white form. The highest value of color contrast coefficient and great electrochemical stability were revealed for composite films obtained via redox-synthesis procedure from solution with 0.1 mM [Fe3+ + Fe(CN)6 3?] and 1.0 mM Ру (PB/PPy-Ch-1:1:10 system).  相似文献   

18.
Methylene blue (MB)/TiO2 hybrid thin films were prepared on glassy carbon (GC) electrode surface by the liquid phase deposition (LPD) process. The electrochemical measurements indicated that MB retained its electrochemical activity in the hybrid films. The linear dependence of the reduction peak current for MB upon the scan rate and linear relationship between the middle point potential of MB and pH revealed the surface-confined two-proton two-electron electrochemical characteristics of MB entrapped in hybrid LPD films. Although the electron transfer of K3[Fe(CN)6] on GC surface was inhibited by TiO2 film, the catalytic reduction of K3[Fe(CN)6] by MB was observed on the MB/TiO2 hybrid films. The electrocatalytic activity of hybrid films was also demonstrated as an “artificial peroxidase” for the catalytic reduction of H2O2.  相似文献   

19.
Composite films of titanium phosphate (TiPS)/Prussian blue (PB) were fabricated by the alternative deposition of TiPS layer and PB nanocrystals. The layer of TiPS was fabricated by adsorption of hydrated titanium from aqueous Ti(SO4)2 solution and subsequent reaction with phosphate groups. The layer of PB nanocrystals was fabricated by sequential adsorption of FeCl3 solution and K4[Fe(CN)6] solution. Regular deposition of TiPS/PB composite films were verified by UV-vis absorption spectroscopy and quartz crystal microbalance measurements. The successful fabrication of the TiPS/PB composite films was further confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. Instead of producing films of TiPS layers alternating with PB nanocrystal layers, the TiPS/PB composite films have a structure in which the interstices of the PB nanocrystal films are filled with TiPS component. TiPS/PB composite films show enhanced electrochemical properties and improved stability in comparison with pure PB films prepared by the multiple sequential adsorption process. TiPS/PB composite films have the capability to catalyze the electrochemical reduction of H2O2 and can be used as a biosensor for detecting H2O2.  相似文献   

20.
Amorphous carbon (or diamond-like carbon, DLC) films have shown a number of important properties usable for a wide range of applications for very thin coatings with low friction and good wear resistance. DLC films alloyed with (semi-)metals show some improved properties and can be deposited by various methods. Among those, the widely used magnetron sputtering of carbon targets is known to increase the number of defects in the films. Therefore, in this paper an alternative approach of depositing silicon-carbide-containing polymeric hydrogenated DLC films using unbalanced magnetron sputtering was investigated. The influence of the C2H2 precursor concentration in the deposition chamber on the chemical and structural properties of the deposited films was investigated by Raman spectroscopy, X-ray photoelectron spectroscopy and elastic recoil detection analysis. Roughness, mechanical properties and scratch response of the films were evaluated with the help of atomic force microscopy and nanoindentation. The Raman spectra revealed a strong correlation of the film structure with the C2H2 concentration during deposition. A higher C2H2 flow rate results in an increase in SiC content and decrease in hydrogen content in the film. This in turn increases hardness and elastic modulus and decreases the ratio H/E and H3/E2. The highest scratch resistance is exhibited by the film with the highest hardness, and the film having the highest overall sp3 bond content shows the highest elastic recovery during scratching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号