首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A green and efficient route has been employed to synthesize a worm-like mesoporous carbon with high specific surface area (2587 m2 g?1) and large pore volume (3.14 cm3 g?1). Three electrochemical methods have been used to measure its electrochemical performance. Worm-like mesoporous carbon performs the high specific capacitance (344 F g?1) at constant-current densities of 50 mA g?1.  相似文献   

2.
Hydrous vanadium oxide (denoted as VOx·yH2O) deposited at 0.4 V shows promising capacitive behavior in aqueous media containing concentrated Li ions. VOx·yH2O annealed in air at 300 °C for 1 h shows highly reversible Li-ion intercalation/de-intercalation behavior with specific capacitance reaching ca. 737 and 606 F g? 1 at 25 and 500 mV s? 1 in 12 M LiCl between ?0.2 and 0.8 V. In 14 M LiCl, retention of specific capacitance is about 95% when the scan rate is increased from 25 to 500 mV s? 1. This work is the first report showing the ultrahigh rate of Li-ion intercalation/de-intercalation in VOx·yH2O. A so-called Li-ion supercapacitor of the asymmetric type consisting of a VOx.yH2O cathode and a WO3.zH2O anode is proposed here.  相似文献   

3.
MnO2 multilayer nanosheet clusters were prepared via electrochemical deposition route, which shows simpleness and high efficiency. The growth process of MnO2 multilayer nanosheet clusters was investigated in this paper. The deposited MnO2 films were characterized by XRD, SEM, TEM, and XPS. In addition, it was also electrochemically characterized by cyclic voltammetry in 1.0 M Na2SO4 electrolyte. The MnO2 multilayer nanosheet clusters show a big specific capacitance, and it can be achieved about 521.5 F g?1 at 5 mV s?1. These materials also have a high electrochemical stability.  相似文献   

4.
PbO2 thin films were prepared by pulse current technique on Ti substrate from Pb(NO3)2 plating solution. The hybrid supercapacitor was designed with PbO2 thin film as positive electrode and activated carbon (AC) as negative electrode in the 5.3 M H2SO4 solution. Its electrochemical properties were determined by cyclic voltammetry (CV), charge–discharge test and electrochemical impedance spectroscopy (EIS). The results revealed that the PbO2/AC hybrid supercapacitor exhibited large specific capacitance, high-power and stable cycle performance. In the potential range of 0.8–1.8 V, the hybrid supercapacitor can deliver a specific capacitance of 71.5 F g?1 at a discharge current density of 200 mA g?1(4 mA cm?2) when the mass ratio of AC to PbO2 was three, and after 4500 deep cycles, the specific capacitance remains at 64.4 F g?1, or 32.2 Wh Kg?1 in specific energy, and the capacity only fades 10% from its initial value.  相似文献   

5.
The stacks of multi-layer Ti3C2Tx and other types of MXene materials limit their electrochemical performance. Herein, we report a facile exfoliation technique to improve the exfoliation efficiency through Li-intercalation into Ti3C2Tx interlayers in isopropyl alcohol (IPA) with LiOH as intercalant. This de-intercalation method presented here not only effectively delaminates the stacked Ti3C2Tx multi-layers into separate few-layer MXene sheets, but also achieves high-rate supercapacitive performance of Ti3C2Tx electrode. The as-produced delaminated Ti3C2Tx shows highly improved electrochemical capacitive properties from 47 to 115 F g 1 at 200 mV s 1. Even at extremely high scan rate of 1000 mV s 1, a specific capacitance of 82 F g 1 is still obtained. The high-rate capability can be attributed to improved ions accessibility into the few-layer structures. This study offers a new and simple exfoliation pathway for MXenes materials to exploit their full potential in energy storage applications.  相似文献   

6.
Using ZnCl2 activation we prepared a series of carbon electrodes from waste coffee grounds to study the effect of mesopores on double-layer capacitance in a tetraethyl ammonium tetrafluoroborate/acetonitrile electrolyte. The activated carbon with the largest mesopore volume achieved an energy density of 34 Wh kg?1 at low current loads, and significantly retained an energy density of 16.5 Wh kg?1 and specific capacitance of more than 100 F g?1 at fast charge–discharge rates (20 A g?1). The effect of mesopores on capacitance at fast charge–discharge rates is discussed.  相似文献   

7.
Activated carbon fibers (ACFs) with high surface area and highly mesoporous structure for electrochemical double layer capacitors (EDLCs) have been prepared from polyacrylonitrile fibers by NaOH activation. Their unique microstructural features enable the ACFs to present outstanding high specific capacitance in aqueous, non-aqueous and novel ionic liquid electrolytes, i.e. 371 F g−1 in 6 mol L−1 KOH, 213 F g−1 in 1 mol L−1 LiClO4/PC and 188 F g−1 in ionic liquid composed of lithium bis(trifluoromethane sulfonyl)imide (LiN(SO2CF3)2, LiTFSI) and 2-oxazolidinone (C3H5NO2, OZO), suggesting that the ACF is a promising electrode material for high performance EDLCs.  相似文献   

8.
A novel acidic cellulose–chitin hybrid gel electrolyte including binary ionic liquids (ILs) with an aqueous H2SO4 solution was prepared for an electric double layer capacitor (EDLC). Its electrochemical characteristics were investigated by galvanostatic charge–discharge measurements. The test cell with a hybrid gel electrolyte shows a specific capacitance of 162 F g?1 at room temperature, which is higher than that for a cell with an H2SO4 electrolyte, 155 F g?1. This hybrid gel electrolyte exhibits excellent high-rate discharge capability in a wide range of current densities as well as an aqueous H2SO4 solution. The discharge capacitance of the test cell can retain over 80% of its initial value in 100,000 cycles even at a high current density of 5000 mA g?1.  相似文献   

9.
One common dilemma encountered in designing a supercapacitor electrode is that the specific capacitance (Cs) of the active material decreases significantly as the active-material loading (mass area? 1) increases. As a result, the geometric capacitance density (GCD; Farad area? 1) of the electrode does not scale up linearly but gradually levels off with increasing loading. For MnO2 supercapacitors, this problem has been solved to a great extent by introducing a superabsorbent polymer (SAP) binder, namely polyacrylic acid (PAA), to form composite particles with MnO2. Other than acting as a binder to bound together MnO2 particles, the SAP is believed to facilitate distribution of electrolyte throughout the active layer owing to its electrolyte-absorbing and swelling behaviors. The Cs of MnO2 remains almost unchanged as the oxide loading varies over a wide range (1.5–6.5 mg cm? 2) of heavy active-material loading. In addition, putting PAA throughout the entire active layer helps to magnify the specific interaction between PAA and MnO2 that is known to enhance the capacitance of individual MnO2 particles. The success in combining both high Cs and high active-material loading results in GCD of ca. 1.8–1.4 F cm? 2 even under very high current densities (ca. 35–260 mA cm? 2 or 5–40 A g? 1-MnO2).  相似文献   

10.
The efficiently hydrothermal route using sucrose without any catalysts is employed to prepare the uniform carbon spheres. The monodisperse 100–150 nm carbon spheres are obtained with the activation treatment in molten KOH. The carbon spheres are characterized by transmission electron microscope, X-ray diffraction, N2 adsorption, Raman spectroscopy and electrochemical techniques. The relationships of specific capacitance and surface properties of carbon spheres are investigated. A single electrode of carbon nanosphere materials performs excellent specific capacitance (328 F g−1), area capacitance (19.2 μF cm−2) and volumetric capacitance (383 F cm−3).  相似文献   

11.
A novel trinuclear cobalt-oxo cluster 2[Co3O(Ac)6(H2O)3]·H2O (Co-OXO) has been obtained and characterized by X-ray single-crystal diffraction and elemental analysis. The structure of Co-OXO displays 3D supramolecular networks through hydrogen bonds and generates boron nitride (bnn) topology. Co-OXO was further used as a precursor to synthesize Co-containing mesoporous carbon foams (Co-MCFs), which exhibit highly ordered mesostructure with specific surface area of 614 m2 g?1 and uniform pore size of 2.7 nm. Charge–discharge tests show that the specific discharge capacitance of Co-MCFs is 7% higher than that of the MCFs at the current density of 100 mA g?1, and 26% higher than that of MCFs at the current density of 3 A g?1. The electrochemical behaviors of Co-MCFs are obviously improved due to the improved wettability, increased graphitization degree and the pseudo-capacitance through additional faradic reactions arising from cobalt.  相似文献   

12.
A polymeric activated carbon (PAC) was synthesized from the carbonization of a resorcinol–formaldehyde resin with KOH served as an activation agent. The nitrogen adsorption–desorption at 77 K, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared PAC. Compared with the commercial activated carbon (Maxsorb: Kansai, Japan), PAC shows superior capacitive performance in terms of specific capacitance, power output and high energy density as electrode materials for supercapacitors. PAC presents a high specific capacitance of 500 F g?1 in 6 mol l?1 KOH electrolyte at a current density of 233 mA g?1 which remained 302 F g?1 even at a high current density of 4.6 A g?1. The good electrochemical performance of the PAC was ascribed to well-developed micropores smaller than 1.5 nm, the presence of electrochemically oxygen functional groups and low equivalent series resistance.  相似文献   

13.
The birnessite type manganese dioxide electrode was prepared by the electrochemical stimulation as we recently described. It showed 190 F g−1 in a Na2SO4 aqueous solution between −0.1 and 0.9 V versus Ag/AgCl at 1 A g−1. The specific capacitance of birnessite was decreased by the manganese dissolution when the reduction and oxidation were repeated. By adding small amounts of Na2HPO4 or NaHCO3 into the electrolyte, the capacitance increased to 200–230 F g−1 and the manganese dissolution was successfully suppressed. Thanks to the additives, the birnessite demonstrated the much improved cycleability over >1800 cycles.  相似文献   

14.
In this Letter we report the results of the measurements of the rate coefficients for thermal attachment to several perfluoroethers namely perfluorodiglyme (C6F14O3), perfluorotriglyme (C8F18O4), perfluoropolyether (CF3–(OCF(CF3)CF2)n–(OCF2)m–OCF3) and perfluorocrownether ((C2F4O)5). Rate coefficients were obtained under thermal conditions in the temperature range 298–378 K. The increase of the rates with temperature follows the Arrhenius law and the activation energies have been obtained from the slope of the ln(k) vs. 1/T. The respective values of the rate coefficients (at 298 K) and activation energies are as follows: 7.7 ± 1.2 × 10?11 cm3 s?1 (0.18 ± 0.005 eV), 6.7 ± 2.1 × 10?11 cm3 s?1 (0.25 ± 0.004 eV), 2.1 ± 0.2 × 10?10 cm3 s?1 (0.16 ± 0.010 eV), 3.1 × 10?11 cm3 s?1 (0.27 ± 0.003 eV) for C6F14O3, C8F18O4, CF3–(OCF(CF3)CF2)n–(OCF2)m–OCF3 and (C2F4O)5.  相似文献   

15.
This paper reports the microwave-assisted synthesis of Co3O4 nanomaterials with different morphologies including nanoparticles, rod-like nanoclusters and macroporous platelets. The new macroporous platelet-like Co3O4 morphology was found to be the best suitable for reversible lithium storage properties. It displayed superior cycling performances than nanoparticles and rod-like nanoclusters. More interestingly, excellent high rate capabilities (811 mAh g?1 at 1780 mA g?1 and 746 mAh g?1 at 4450 mA g?1) were observed for macroporous Co3O4 platelet. The good electrochemical performance could be attributed to the unique macroporous platelet structure of Co3O4 materials.  相似文献   

16.
This work introduces an effective, inexpensive, and large-scale production approach to the synthesis of Fe2O3 nanoparticles with a favorable configuration that 5 nm iron oxide domains in diameter assembled into a mesoporous network. The phase structure, morphology, and pore nature were characterized systematically. When used as anode materials for lithium-ion batteries, the mesoporous Fe2O3 nanoparticles exhibit excellent cycling performance (1009 mA h g 1 at 100 mA g 1 up to 230 cycles) and rate capability (reversible charging capacity of 420 mA h g 1 at 1000 mA g 1 during 230 cycles). This research suggests that the mesoporous Fe2O3 nanoparticles could be suitable as a high rate performance anode material for lithium-ion batteries.  相似文献   

17.
Electrode materials for supercapacitors are at present commonly evaluated and selected by their mass specific capacitance (CM, F g−1). However, using only this parameter may be a misleading practice because the electrode capacitance also depends on kinetics, and may not increase simply by increasing material mass. It is therefore important to complement CM by the practically accessible electrode specific capacitance (CE, F cm−2) in material selection. Poly[3,4-ethylene-dioxythiophene] (PEDOT) has a mass specific capacitance lower than other common conducting polymers, e.g. polyaniline. However, as demonstrated in this communication, this polymer can be potentiostatically grown to very thick films (up to 0.5 mm) that were porous at both micro- and nanometer scales. Measured by both cyclic voltammetry and electrochemical impedance spectrometry, these thick PEDOT films exhibited electrode specific capacitance (CE, F cm−2) increasing linearly with the film deposition charge, approaching 5 F cm−2, which is currently the highest amongst all reported materials.  相似文献   

18.
Activated carbon derived from rod-shaped polyaniline (the diameter of 170 nm) was synthesized by carbonization and subsequent activation with KOH. The obtained activated carbon exhibits a high specific capacitance (455 F g?1) and remarkable rate capability due to its high specific surface area (1976 m2 g?1), narrow pore size distribution (< 3 nm) as well as short diffusion length. It is indicated that the promising synthetic method used in this work can pave the way for designing new carbon based materials from different polymers for high-performance energy applications.  相似文献   

19.
We have explored electrochemically deposited pervoskite nanocrystalline porous bismuth iron oxide (BiFeO3) thin film electrode from alkaline bath for electrochemical supercapacitors. The pervoskite BiFeO3 nanocrystalline thin film electrode showed comparable specific capacitance of 81 F g−1 and electrochemical supercapacitive performance and stability in an aqueous NaOH electrolyte to that of commonly used ruthenium based pervoskites.  相似文献   

20.
Fibriform polyaniline/nano-TiO2 composite is prepared by one-step in situ oxidation polymerization of aniline in the presence of nano-TiO2 particles, which contains 80% conducting polyaniline by mass, with a conductivity of 2.45 S/cm at 25 °C. Its maximum specific capacitance is 330 F g?1 at a constant current density of 1.5 A g?1, and can be subjected to charge/discharge over 10,000 cycles in the voltage range of 0.05–0.55 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号