首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
超分子自组装是发展超分子电子学的重要途径。随着纳米科学和技术的迅速发展,自组装技术已成功地应用于纳米尺度物质的维数、形貌和功能等的调控。作为构筑分子水平上一维、二维、三维有序功能结构和高有序分子聚集态结构的关键技术,超分子自组装技术有力地推动了具有优良光、电、磁性能的分子材料和纳米功能材料更深层次的研究。本文综述了超分子自组装在富勒烯科学领域的基础研究和应用,特别是对有利于自组织和自组装功能的富勒烯基衍生物的设计与合成、超分子作用力引导的具有特定结构的分子体系的可控自组装、以及富勒烯分子聚集态结构材料的光物理过程、超分子中电子转移和能量转移现象进行了描述;并对卟啉、四硫富瓦烯、碗烯和杯芳烃等一系列富π电子化合物和大环主体分子等包含[60]富勒烯的主体化合物的超分子作用和超分自组装体以及通过氢键、π-π作用、静电力和范德华力和金属配位作用形成的[60]富勒烯超分子自组装体进行了总结,对未来发展进行了展望。  相似文献   

2.
A biscalix[5]arene–C60 supramolecular structure was utilized for the development of supramolecular fullerene polymers. Di‐ and tritopic hosts were developed to generate the linear and network supramolecular polymers through the complexation of a dumbbell‐shaped fullerene. The molecular association between the hosts and the fullerene were carefully studied by using 1H NMR, UV/Vis absorption, and fluorescence spectroscopy. The formation of the supramolecular fullerene polymers and networks was confirmed by diffusion‐ordered 1H NMR spectroscopy (DOSY) and solution viscometry. Upon concentrating the mixtures of di‐ or tritopic hosts and dumbbell‐shaped fullerene in the range of 1.0–10 mmol L?1, the diffusion coefficients of the complexes decreased, and the solution viscosities increased, suggesting that large polymeric assemblies were formed in solution. Scanning electron microscopy (SEM) was used to image the supramolecular fullerene polymers and networks. Atomic force microscopy (AFM) provided insight into the morphology of the supramolecular polymers. A mixture of the homoditopic host and the fullerene resulted in fibers with a height of (1.4±0.1) nm and a width of (5.0±0.8) nm. Interdigitation of the alkyl side chains provided secondary interchain interactions that facilitated supramolecular organization. The homotritopic host generated the supramolecular networks with the dumbbell‐shaped fullerene. Honeycomb sheet‐like structures with many voids were found. The growth of the supramolecular polymers is evidently governed by the shape, dimension, and directionality of the monomers.  相似文献   

3.
The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.  相似文献   

4.
We describe the two-dimensional (2D) assemblies of N,N'-dialkyl-substituted quinacridone derivatives on highly orientated pyrolytic graphite observed by scanning tunneling microscopy, and focus our discussion on whether the supramolecular organization can be modulated by the coadsorption of dicarboxylic acids. Our experiments have demonstrated that the quinacridone derivatives can form different 2D nanostructures when coadsorbed with dicarboxylic acids of different length at the liquid/graphite interface. Interestingly, N,N'-dihexadecyl-substituted quinacridone derivative alternately takes two different conformations in two columns for its coadsorption with pentadecanedioic acid and form a gridlike structure. It is shown that a cooperative effect of different interactions can be modulated by introducing guest molecule, leading to formation of different self-assembled nanostructures.  相似文献   

5.
In the context of designing novel amino acid nanostructures, the capacity of tyrosine alone to form well‐ordered structures under different conditions was explored. It was observed that Tyr can self‐assemble into well‐defined morphologies when deposited onto surfaces for transmission electron microscopy, atomic force microscopy, and scanning electron microscopy. The influence of various parameters that can modulate the self‐assembly process, including concentration of the amino acid, aging time, and solvent, was studied. Different supramolecular architectures, including nanoribbons, branched structures, and fern‐like arrangements were also observed.  相似文献   

6.
Single-crystal one-dimensional (1-D) nanostructures of [2-(p-dimethyl-aminophenyl)ethenyl]-phenyl-methylene-propanedinitrile (DAPMP) have been prepared by a simple solution process without the assistance of added surfactant, catalyst, or template under ambient condition. The approach exploits the directional supramolecular interaction induced by strong donor-acceptor dipole-dipole supramolecular interaction in the growth of 1-D nanostructures. By varying the process temperatures, the DAPMP nanostructures can be controllably prepared as either nanoribbons, nanotubes, or nanowires with high morphological and chemical purities. Significant changes in optical properties were observed for nanostructures of different morphology.  相似文献   

7.
Two-component adlayers consisting of zinc(II) phthalocyanine (ZnPc) and a metalloporphyrin, such as zinc(II) octaethylporphyrin (ZnOEP) or zinc(II) tetraphenylporphyrin (ZnTPP), were prepared by immersing either an Au(111) or Au(100) substrate in a benzene solution containing those molecules. The bimolecular adlayers thus prepared were investigated in 0.1 M HClO4 by cyclic voltammetry (CV) and electrochemical scanning tunneling microscopy (EC-STM). A supramolecularly organized "chessboard" structure was formed for the ZnPc and ZnOEP bimolecular array on Au(111), while characteristic nanohexagons were found in the ZnTPP and ZnOEP bimolecular adlayer. EC-STM revealed that the surface mobility and the molecular re-organization of ZnPc and ZnOEP on Au(111) were tunable by manipulating the electrode potential, whereas the ZnTPP and ZnOEP bimolecular array was independent of the electrode potential. A "bottom-up" hybrid assembly of fullerene molecules was formed successfully on an alternate array of bimolecular ZnPc and ZnOEP molecules. The bimolecular "chessboard" served as a template to form the supramolecular assembly of C60 by selective trapping in the open spaces. A supramolecular organization of ZnPc and ZnOEP was also found on the reconstructed Au(100)-(hex) surface. A highly ordered, compositionally disordered but alternate array of ZnPc and ZnOEP was formed on the reconstructed Au(100)-(hex) surface, indicating that the bimolecular adlayer structure is dependent on the atomic arrangement of underlying Au in the formation of supramolecular nanostructures composed of those molecules. On the bimolecular array consisting of ZnPc and ZnOEP on the Au(100)-(hex), no highly ordered supramolecular assembly of C60 was found, suggesting that the supramolecular assembly of C60 molecules is strongly dependent upon the bimolecular packing arrangement of ZnPc and ZnOEP.  相似文献   

8.
Corannulene (COR) buckybowls were proposed as near ideal hosts for fullerene C60, but direct complexation of C60 and COR has remained a challenge in supramolecular chemistry. We report the formation of surface-supported COR-C60 host-guest complexes by deposition of C60 onto a COR lattice on Cu(110). Variable-temperature scanning tunneling microscopy studies reveal two distinctly different states of C60 on the COR host lattice, with different binding energies and bowl-ball separations. The transition from a weakly bound precursor state to a strongly bound host-guest complex is found to be thermally activated. Simple model calculations show that this bistability originates from a subtle interplay between homo- and heteromolecular interactions.  相似文献   

9.
Simple modification of solution conditions provides facile access to supramolecular fullerene nanostructures. The fullerene derivative shown self-assembles to give nanorods or vesicles. The nanorods have diameters of 10–250 nm, depending on the counterion, and lengths greater than 70 μm. If ultrasonication is used, no nanorods form, but vesicles result having diameters of 10–70 nm and wall thicknesses of 3–6 nm.  相似文献   

10.
魏祥龙  罗薇  魏先文 《有机化学》2007,26(2):153-162
具有独特的结构和良好的性能的[60]富勒烯超分子体系在有机光电器件、超分子器件和催化等方面有着广阔的应用前景. 综述了基于氢键组装的[60]富勒烯超分子体系, 并对其发展前景作了展望.  相似文献   

11.
In this review,a group of two-dimensional(2D) hydrogen-bonded supramolecular networks developed in our laboratory are discussed.Our attention is mainly focused on:(1) recognition of Fe3+ through twocomponent molecular networks;(2) site-selective fabrication of 2D fullerene arrays;and(3) fabrication of the nanoporous structure regulated by photoisomerization reaction process.It is envisioned that special supramolecular nanostructures,through H-bonding interactions,can be constructed or reconstructed to be further investigated toward the research of multi-component systems,molecule recognition,single molecular switches,and host-guest supramolecular chemistry.  相似文献   

12.
This work is focused on the self-organization of an heteroarm star copolymer consisting of 5 polystyrene and 5 poly(2-vinylpyridine) (P2VP) arms emanated from a poly(divinyl benzene) core and the chemical stabilization of the resulting supramolecular nano-objects in the bulk and in solution. To tune various morphologies from the same star copolymer, selective and nonselective solvent media were used. Thepyridine moieties, forming distinct P2VP nanodomains in the copolymer nanostructures, were selectively crosslinked using 1,4-dibromobutane under mild conditions to yield stabilized polymeric “hairy” nano-objects, dispersible in hot tetrahydrofuran. The morphology of the resulting nanostructures was studied using scanning electron microscopy and was found to be strongly dependent on various factors, such as the self-assembly/casting conditions, the total time of the crosslinking reaction, and the dispersion procedure. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1636–1641, 2010  相似文献   

13.
Ag作催化剂制备的GaN的形貌及其性能   总被引:2,自引:2,他引:0  
用化学气相沉积法(CVD)在Si(100)衬底上以Ag纳米颗粒为催化剂制备了微纳米结构的GaN,原料是熔融态的金属Ga和气态的NH3。采用X射线衍射仪(XRD)、透射电镜(TEM)、X-ray能谱仪(EDS)、场发射扫描电子显微镜(SEM)、光致发光能谱(PL)和霍尔效应测试对样品进行了结构、成分、形貌和发光、电学性能分析。结果表明:生成的自组装GaN为六方纤锌矿的类似小梯子的微纳米单晶结构,且在不同的温度下,GaN的发光性能和电学性能也有所不同,相对于强的紫外发光峰,其它杂质发光峰很微弱,且均呈p型导电。对本实验所得到的GaN微纳米结构的可能形成机理进行了探讨。  相似文献   

14.
Design of the nanostructures based on membrane proteins (the key functional elements of biomembranes) and colloid nanoparticles is a fascinating field at the interface of biochemistry and colloids, nanotechnology and biomedicine. The review discusses the main achievements in the field of ultrathin films prepared from bacterial reaction center proteins and light-harvesting complexes, as well as these complexes tagged with quantum dots. The principles of preparation of these thin films and their structure and properties at different interfaces are described; as well as their characteristics estimated using a combination of the modern interfacial techniques (absorption and fluorescence spectroscopy, atomic force and Brewster angle microscopy, etc.) are discussed. Further approaches to develop the nanostructures based on the membrane proteins and quantum dots are suggested. These supramolecular nanostructures are promising prototypes of the materials for photovoltaic, optoelectronic and biosensing applications.  相似文献   

15.
Li J  Liu J  Wang LS  Chang RP 《Inorganic chemistry》2008,47(22):10325-10329
Wurtzitic gallium nitride nano- and microleaves were controlled grown through a facile chemical vapor deposition method. This is the first report of GaN nanoleaves, a new morphology of GaN nanostructures. The as-grown GaN structures were characterized by means of X-ray powder diffraction, scanning electron microscopy, energy dispersive X-ray, transmission electron microscopy, and selected area electron diffraction. Raman scattering spectra of the GaN leaves were studied. Field effect transistors based on individual GaN nanoleaves were fabricated, and the electrical transport results revealed a pronounced n-type gating effect of the GaN nanostructures.  相似文献   

16.
Herein, a detailed investigation of the adsorption and dynamics of C60 and C70 fullerenes hosted in a self-assembled, two-dimensional, nanoporous porphyrin network on a solid Ag surface is presented. Time-resolved scanning tunneling microscopy (STM) studies of these supramolecular systems at the molecular scale reveal distinct host-guest interactions giving rise to a pronounced dissimilar mobility of the two fullerenes within the porphyrin network. Furthermore, long-range coverage-dependent interactions between the all-carbon guests, which clearly affect their mobility and are likely mediated by a complex mechanism involving the Ag substrate and the flexible porphyrin host network, are observed. At increased fullerene coverage, this unprecedented interplay results in the formation of large fullerene chains and islands. By applying a lattice gas model with nearest-neighbor interactions and by evaluating the fullerene-pair distribution functions, the respective coverage-dependent guest-guest interaction energies are estimated.  相似文献   

17.
In this work, the tree-like carbon nanotubes (CNTs) with branches of different diameters and the wing-like CNTs with graphitic-sheets of different densities were synthesized by using plasma enhanced chemical vapor deposition. The nanostructures of the as-prepared hybrid carbon materials were characterized by scanning electron microscopy and transmission electron microscopy. The structural dependence of field electron emission (FEE) property was also investigated. It is found that both of the tree- and wing-like CNTs exhibit a lower turn-on field and higher emission current density than the pristine CNTs, which can be ascribed to the effects of branch size, crystal orientation, and graphitic-sheet density.  相似文献   

18.
Supramolecular self-assembly,an important strategy in nanotechnology,has been widely studied in the past two decades.In this review,we have introduced the recent progress on construction of two-dimensional(2D)nanostructures by host-guest supramolecular chemistry at solid-liquid interface,and the interactions between the host assembly and the guest molecules are the major concerns.At first,the hydrogen bonds connected hybrid structures are discussed.And then we have paid a close attention on the surface-confined condensation reactions that has flourished recently in direct preparing novel nanostructures with increasing structural complexity.In the end,the cavity confinement of the 2D supramolecular host-guest architectures has been studied.On the basis of the above-mentioned interactions,a group of functional hybrid structures have been prepared.Notably,scanning tunneling microscopy(STM),a unique technique to probe the surface morphology and information at the single molecule level,has been used to probe the formed structures on highly oriented pyrolytic graphite(HOPG)surface.  相似文献   

19.
Controlling the morphology of supramolecular nanostructures in response to external stimuli is an important challenge in the development of functional soft materials. Here we show that a morphological transformation from 2D nanosheets to a network of 1D nanofibers is triggered by heating, which induces molecular conversion of a bolaamphiphile to a hydrogelator by means of a retro‐Diels–Alder reaction, thereby producing a new heat‐set supramolecular hydrogel. We anticipate that our design will be a starting point for more sophisticated supramolecular systems that integrate the thermodynamics of molecular assembly and the kinetics of chemical reactions to create complex supramolecular nanostructures.  相似文献   

20.
Scanning probe microscopies, such as scanning tunneling microscopy and atomic force microscopy, are uniquely powerful tools for probing the microscopic properties of surfaces. If these microscopies are used to study low-dimensional materials, from two-dimensional solids such as graphite to zero-dimensional nanostructures, it is possible to elucidate atomic-scale structural and electronic properties characteristic of the bulk of a material and not simply the surface. By combining such measurements with chemical synthesis or direct manipulation it is further possible to elucidate relationships between composition, structure, and physical properties, thus promoting an understanding of the chemical basis of material properties. This article illustrates that the combination of scanning probe microscopies and chemical synthesis has advanced our understanding of charge density waves, high-temperature superconductivity, and nanofabrication in low-dimensional materials. This new approach to studying materials has directly contributed to our knowledge of how metal dopants interact with charge density waves and elucidated the local crystal chemistry of complex copper oxides, microscopic details of the superconducting states in materials with a high superconducting transition Ic, and new approaches to the fabrication of multi-component nanostructures. Coupling scanning probe microscopy measurement and manipulation with chemical synthesis should provide an approach to understanding material properties and creating complex nanostructures in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号