首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic-structural changes and polymer - solvent interactions during the thermotropic phase transition in poly(vinyl methyl ether) (PVME)/D2O solutions in a broad range of polymer concentrations (c = 0.1-60 wt.-%) were studied combining the measurements of 1H NMR spectra, spin-spin (T2) and spin-lattice (T1) relaxation times. Phase separation in solutions results in a marked line broadening of a major part of polymer segments, evidently due to the formation of compact globular-like structures. The minority (∼15%) mobile component, which does not participate in the phase separation, consists of low-molecular-weight fractions of PVME, as shown by GPC. Measurements of spin-spin relaxation times T2 of PVME methylene protons have shown that globular structures are more compact in dilute solutions in comparison with semidilute solutions where globules probably contain a certain amount of water. A certain portion of water molecules bound at elevated temperatures to (in) PVME globular structures in semidilute and concentrated solutions was revealed from measurements of spin-spin and spin-lattice relaxation times of residual HDO molecules.  相似文献   

2.
Combination of 1H NMR spectroscopy and differential scanning calorimetry (DSC) was used to investigate temperature-induced phase transition in D2O solutions of poly(N-isopropylmethacrylamide-co-acrylamide) random copolymers. Both the NMR and DSC data showed dependence on the acrylamide (AAm) content in the copolymer; with increasing AAm content, the phase transition is shifted to higher temperatures, and both phase-separated fractions determined by NMR and change of the enthalpy determined by DSC decrease faster than the content of thermosensitive N-isopropylmethacrylamide (NIPMAm) units in the copolymer. NMR data were used to construct van't Hoff plots, and changes of the enthalpy ΔH and entropy ΔS, characterizing the phase transition, were determined. As it follows from comparison of NMR and DSC thermodynamical parameters (ΔH values), the size of the cooperative units (domains), undergoing the transition as a whole, decreases with increasing AAm content in the copolymer since the NIPMAm collapsed domains are separated by regions with hydrated AAm and surrounding NIPMAm sequences.  相似文献   

3.
《Fluid Phase Equilibria》1999,165(2):225-260
The influence of some single salts (NaCl, KCl, Na2HPO4 and K2HPO4) and poly(ethylene glycol) (PEG) on the swelling of aqueous poly(arcylamide)-gels was studied at 25°C in more than 600 experiments. The chlorides and phosphates cause a different behavior at high salt concentrations: The polyacrylamide gels swell in aqueous solutions of sodium and potassium chloride whereas they shrink when chloride ions are substituted by hydrogen phosphate ions. These differences are due to differences in the interactions of chloride and hydrogen phosphate ions with the network groups. In aqueous solutions of poly(ethylene glycol) the gels shrink continuously with increasing polymer concentration. At constant PEG mass fraction in the liquid phase, the swelling of the gel decreases with increasing molecular weight of PEG. The experimental results (degree of swelling, partitioning of solutes to the coexisting phases) are correlated by combining a model for the Gibbs excess energy for aqueous systems of polymers and electrolytes with a modification of the phantom-network theory. The correlation gives a good agreement with the experimental data for the degree of swelling, whereas in most cases, there is only a qualitative agreement for the partitioning of the solutes.  相似文献   

4.
Water soluble 2-azobenzenoxy-ethoxy-hydroxpropylcelluloses (azo-EHPC) were synthesized by etherification reaction of bromoethoxy-azobenzene (BEA) with hydroxypropylcellulose (HPC) to study their phase transition behavior in aq. solution. The degree of substitution (DS) of the water soluble azo-EHPCs was less than 0.066. Their chemical structure and thermal property were characterized by proton nuclear magnetic resonance (1H-NMR), fourier transform infrared spectroscopy (FT-IR), and differential scanning calorimetry. The azo-EHPC showed a reversible sol–gel transition behavior in its aq. solution, i.e. a clear azo-EHPC aq. solution became turbid when the solution temperature surpassed a lower critical solution temperature (LCST). The sol–gel transition phenomenon was investigated by optical microscopy and turbidimetric measurement. It was found that the LCST was related to the cis-/trans- conformation of the azobenzene side group, the type of cyclodextrin (CD), concentration of azo-EHPC, and NaCl concentration. The LCST of azo-EHPC was lower than that of HPC (36.6 °C) by at most 13.6 °C, and the LCST of trans-azo-EHPC was less than that of cis-azo-EHPC by ca. 3 °C. Additionally, the presence of CD in solutions displayed a positive effect on the LCST, i.e. increasing the LCST by 3–5 °C. And this impact was more profound on the azo-EHPC with higher DS values. The thermoreversible phase transition mechanism was discussed. We proposed that the effect of DS, conformation of azobenzene group, azo-EHPC concentration, salt concentration, and CD on the LCST of azo-EHPCs was a rearrangement of the hydrophilic/hydrophobic interaction between side azobenzene groups and water molecules.  相似文献   

5.
1H NMR investigations were performed on thin films of poly(vinylidene fluoride) (PVDF) and polyamide 11 (PA 11). The variation of the angle between the static magnetic Bo-field and preferred directions given by drawing and poling leads to characteristic dependences of T20ff, which can be discussed in terms of Legendre polynomials of the orientational distribution functions of crystallographic c- and b-axis. A good c-axis alignment can be realized by uniaxial drawing. The tendency for b-axis to orient towards the direction of the applied electric field via the orientation of the electric dipoles is evident. The b-axis alignment can be “switched” periodically.  相似文献   

6.
Polymer-solvent interaction parameters are reported for poly(vinyl acetate)-acetone, poly(vinyl acetate)-toluene, and poly(dimethyl siloxane)-toluene systems using different techniques. Results obtained by osmotic deswelling are compared with those from quasi-elastic light scattering and small-angle neutron scattering (SANS). In gels, the latter techniques involve separation of the time-dependent from the static component of the scattered radiation+ Separation is achieved in quasi-elastic light scattering through the heterodyning properties of the light, and in SANS by subtracting an appropriate static structure factor. The interaction parameters obtained by different separation procedures are consistent with measurements using the osmotic method. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
8.
9.
Abstract

The high-frequency dielectric relaxation of aqueous solutions of protonated diallylammonium polyelectrolyte, namely poly(diallylmethylammonium trifluoroacetate) has been studied at the maximum water dispersion frequencies, 7.5–25?GHz, and temperatures of 288, 298, and 308?K. Dielectric relaxation parameters have been calculated and compared with similar characteristics of aqueous solutions of monomer, diallylmethylammonium trifluoroacetate, and pyrrolidinium trifluoroacetate salt simulated structure of pyrrolidinium polymer link. It has been concluded that although the monomer features hydrophobic hydration, its polymer exhibits hydrophilic hydration properties. This change is related to conformation of hydrophilic-hydrophobic polycations in aqueous solutions and the change in the structure of polymer links.  相似文献   

10.
The phase transition and critical phenomenon of equilibrium swollen poly(N-isopropylacrylamide) (NIPA) hydrogels were studied by 1H NMR spectroscopy in liquid solution mode. The quantitative NMR observation shows that the peak height and line width of polymer proton and of the HOD proton, and relaxation times of HOD proton all transitionally change as the temperature approaches the transition temperature. The relaxation times of water protons are also measured quantitatively, which shows that the temperature dependence of relaxation times of HOD on temperature before the transition is not consistent with relaxation theory based on the assumption of dominated dipolar interaction between like-spin nuclei and isotropic rotational motion. To explain the surprising relaxation behavior of HOD, we suggest that the amount of bound water in gels increases gradually with temperature at the approach of the phase transition. The pulsed-gradient spin-echo NMR experiments of NIPA gel confirm this suggestion. We believe that these results have important implications concerning the mechanism of the phase transition of NIPA hydrogels.  相似文献   

11.
The effects of temperature, polymer composition, and concentration on the micellization and gelation properties of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers in aqueous solutions were investigated by 1H NMR spectroscopy. It was found that the temperature-dependent behavior of PPO blocks, observed as changes in chemical shift, half-height width, and integral value, could be attributed as an intrinsic tool to characterize the transition states during unimer to micelle formation. The 1H NMR spectral analysis revealed that the hydrophobic part, PPO, of the Pluronic polymers plays a more significant role in the temperature-induced micellization, whereas the transitional behavior of Pluronic polymer, i.e., from micellization to liquid crystals formation, resulted in the drastic broadening of the spectral signals for the PEO, indicating that the PEO segments play a more significant role in the crystallization process. It was also observed that the temperature-dependent changes in the half-height width of the PEO -CH2- signal are sensitive to the liquid crystalline phase formation, which could be attributed to the close packing of spherical micelles at high polymer concentrations or temperatures.  相似文献   

12.
We experimentally demonstrated that liquid-liquid phase separation (LLPS) of protein aqueous solutions can be induced by isothermal protein oligomerization. This phenomenon is analogous to LLPS induced by the polymerization of small organic molecules in solution. Specifically, using glutaraldehyde for protein cross-linking, we observed the formation of protein-rich liquid droplets for bovine serum albumin and chicken egg lysozyme at 25 degrees C. These droplets evolved into cross-linked protein microspheres. If the aqueous solutions of the protein monomer do not show LLPS at temperatures lower than the oligomerization temperature, protein-rich droplets are not observed. We experimentally linked the formation of these droplets to the increase of LLPS temperature during protein oligomerization. When macroscopic aggregation competes with LLPS, a rationale choice of pH, polyethylene glycol, and salt concentrations can be used to favor LLPS relative to aggregation. Although glutaraldehyde has been extensively used to cross-link protein molecules, to our knowledge, its use in homogeneous aqueous solutions to induce LLPS has not been previously described. This work contributes to the fundamental understanding of both phase transitions of protein solutions and the morphology of protein condensed phases. It also provides guidance for the development of new methods based on mild experimental conditions for the preparation of protein-based materials.  相似文献   

13.
Gel-sol transition of sodium type gellan solutions with and without salts is studied by dynamic viscoelastic measurements and differential scanning calorimetry (DSC). Mechanical spectra show that gellan aqueous solutions behave as an entangled polymer solution in the concentration range around 2 wt.-% at temperatures >15°C and as a weak gel below this temperature. Concentrated solutions (> 3 wt.-%) show a true gel behavior below 30°C. The two step transition is observed for 2∼3 wt.-% gellan aqueous solutions in thermal scanning rheological (TSR) measurements; the transition at a higher temperature is attributed to a coil-helix transition whilst the transition at a lower temperature is attributed to sol-gel transition. The transition observed in dilute solutions of gellan is attributed to the coil-helix transition whilst the sol-gel transition occurs simultaneously with coil-helix transition in more concentrated solutions (>3 wt.-%). The sol-gel transition temperature shifts to higher temperatures with increasing concentration of the added salts. Junction zones formed in the presence of divalent cations are far more heat resistant than those with monovalent cations judging from both DSC and TSR, however, the possibility of the formation of junction zones by covalent bonds or by ionic bonds is excluded.  相似文献   

14.
15.
Diffusion of α and β cyclodextrin (α-CD and β-CD, respectively) has been studied in aqueous solutions of poly(methacrylic acid), sodium poly(styrene sulfonate), having three different degrees of sulfonation (DS), and copoly(styrene-methacrylic acid) containing three different amounts of styrene. N-Acetylglucosamine and raffinose were included as reference diffusants. It was found that a decrease of the diffusion coefficients of the CD's in these polymer solutions is characteristically dependent on the polymer concentration, DS, Styrene content, and the degree of neutralization. The results were interpreted by assuming a 1:1 complex formation between CD and an appropriate residue in the polymer. The complex diffusion behavior of CD in the copolymer solutions suggested that the ability of the polymer residue to form complexes with the CD is lost when the polymer chain dimensions are reduced with decreasing neutralization.  相似文献   

16.
The pressure dependence of liquid-liquid equilibria in weakly interacting binary macromolecular systems (homopolymer solutions and blends) will be discussed. The common origin of the separate high-temperature/low-temperature and high-pressure/low-pressure branches of demixing curves will be demonstrated by extending the study into the region of metastable liquid states including the undercooled, overheated and stretched states (i.e. states at negative pressures). The seemingly different response of the UCST-branch of solutions and blends when pressurized (pressure induced mixing for most polymer solutions, pressure induced demixing for most blends) will be explained in terms of the location of a hypercritical point found either at positive (most solutions) or negative pressure (most blends). Further, it is shown that the pressure dependence of demixing of homopolymer solutions and blends may be described using a ‘master-curve’ which, however, is sometimes partly masked by degradation or by vapour-liquid and/or solid-liquid phase transitions. Experimental results demonstrating the extension of liquid-liquid phase boundary curves into the metastable regions will be presented, and the existence of solubility islands in the vicinity of the hypercritical points discussed.  相似文献   

17.
A comparison of small-angle neutron scattering (SANS) intensity functions, I(q), was made between gels and solutions of poly(N-isopropyl acrylamide-co-acrylic acid) (NIPA/AAc), where q is the magnitude of the scattering vector. I(q)'s were strongly dependent on polymer concentration as well as temperature. At low temperatures, I(q)'s for both gels and solutions were similar to each other and were monotonous decreasing functions. However, at high temperatures above θ, the so-called theta temperature of poly-NIPA in aqueous solution, both had a distinct peak and a significant difference appeared in I(q) due to the presence or absence of crosslinks. Origins of the peak and the differences in I(q) are discussed.  相似文献   

18.
 Theoretical equations were proposed to adequately simulate the electrical conductivity behavior of aqueous solutions of both charged and uncharged polymers. The theory, based on the mixture equation of Boned and Peyrelasse, was experimentally verified on poly(acrylic acid) (PAA) in water and poly(ethylene oxide) (PEO) in aqueous electrolyte solutions. The data analysis suggested that both the polymer coils may be depicted as oblate ellipsoids. Subsequently, the semiaxes values of the polymer coils were determined, and they were in good agreement with the results reported in the literature. Received: 25 June 1996 Accepted: 2 October 1996  相似文献   

19.
Cooperative coupling reaction between two opposite charged polyelectrolytes results in formation of polyelectrolyte complexes (IPEC). This reaction is very fast and diffusion controlled. Whether IPECs formed by linear polyions are soluble or limitary swellable in aqueous media is decided by their composition, namely, by a ratio of oppositely charged polyions as well as by a water phase composition (the nature and the concentration of a simple salt, pH, the presence and the concentration of organic additives etc.). The most important intrinsic property of IPECs is their ability to participate in interchange (exchange and substitution) reactions with competing polyions. The kinetics and the position of equilibria in these reactions are controlled by the low molecular salt concentration, the nature of small counterions, DP of interaction polyelectrolytes, as well as by their linear charge density. IPECs can be formed also by interacting linear and opposite charged networks. It is shown that linear polyelectrolytes dissolved in aqueous solution can penetrate unexpectedly fast into oppositely charged cross-linked polyelectrolyte gels to form “snake-in-cage” composites representing IPECs of corresponding polyion segments. It is proved that the mechanism consists in “relay-race” transfer of linear polyion segments from one segment of the polyelectrolyte network to the other via interpolyelectrolyte exchange reaction. The driving force for the fast transport of linear polyions into the gel is produced by coupling reaction between two polyelectrolytes proceeding on solution/gel interface.  相似文献   

20.
The swelling of poly(acrylamide) (PAAm) gels and the osmotic pressure of linear PAAm in aqueous solutions were predominantly affected by anion type and increased according to the lyotropic series ranking of sodium halide anions: F? < (H2O) < Cl? < Br? < I?. The osmotic pressure of PAAm in all examined salt solutions followed the scaling theory, with an exponent of 2.3 ± 0.1. In solutions of a sodium halide series, the value of the pre‐exponential factor seemed to depend on salt concentration, anion radius, and the apparent “anionic‐portion radius” of the water molecule. This radius, extracted from the literature data, marks a transition point of the anion radius effect. Larger anions increase the osmotic pressure of PAAm more significantly as their concentration increases and vice versa. The effects of the anions on the osmotic pressure of PAAm are related to their preferential interactions with the polymer. Iodide, which increased the osmotic pressure of PAAm with respect to its value in pure water, seemed to preferentially adsorb onto the polymer with a binding constant of Kb = 9.7 ± 2.0 M?1 determined by isothermal titration microcalorimetry. However, fluoride, which decreased the osmotic pressure, was preferentially repulsed. The mechanisms of attraction and repulsion were attributed to ion‐water‐polymer interactions and the solvent quality of the hydrated ions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 508–519, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号