首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The generation and application of nanodes in SECM experiments are described. Nanodes are ultramicroelectrodes with an active disk diameter in the submicrometer range. We investigated the behaviour of these electrodes by testing their properties with SECM applications which were previously performed at the micrometer scale. The active diameter of the nanodes was determined using cyclic voltammetry and SECM. The nanoanalysis was conducted at two nano interdigitated arrays. The nanostructuring was demonstrated by galvanic and electroless silver deposition from solution and from the surface, respectively. Experiments with nanodes illustrate that they exhibit the same behaviour as ultramicroelectrodes, but are more sensitive to adsorption and dirt particles in the electrolyte solution.  相似文献   

2.
DNA duplex regions of the spots on a DNA microarray were successfully visualized by scanning electrochemical microscopy (SECM) in the electrolyte containing ferrocenyl naphthalene diimide as a hybridization indicator.  相似文献   

3.
Scanning electrochemical microscopy (SECM) was used to investigate the effect of ion bombardment on thin films of the conducting polymers poly[3-ethoxy-thiophene] (PEOT) and poly[ethylenedioxy-thiophene] (PEDT). Bombardment with Ar+-ions converts the topmost 30 nm thick layer to an essentially insulating material. SECM approach curves as well as two dimensional scans prove the existence of regions of different conductivity within the irradiated regions that did not show a significant dependence on ion dosage. PEDT layers patterned by ion bombardment through microscopic masks are investigated as prototypes of miniaturized printed circuit boards that can be formed by galvanic copper deposition onto conducting PEDT. Defects in conducting polymer patterns were analyzed by SECM imaging before any deposition of copper. Appropriate representations of SECM images for the evaluation of this technologically important question are discussed.  相似文献   

4.
Scanning electrochemical microscopy (SECM) was used to investigate the effect of ion bombardment on thin films of the conducting polymers poly[3-ethoxy-thiophene] (PEOT) and poly[ethylenedioxy-thiophene] (PEDT). Bombardment with Ar+-ions converts the topmost 30 nm thick layer to an essentially insulating material. SECM approach curves as well as two dimensional scans prove the existence of regions of different conductivity within the irradiated regions that did not show a significant dependence on ion dosage. PEDT layers patterned by ion bombardment through microscopic masks are investigated as prototypes of miniaturized printed circuit boards that can be formed by galvanic copper deposition onto conducting PEDT. Defects in conducting polymer patterns were analyzed by SECM imaging before any deposition of copper. Appropriate representations of SECM images for the evaluation of this technologically important question are discussed.  相似文献   

5.
A non-optical shear-force-based detection scheme for accurately controlling the tip-to-sample distance in scanning electrochemical microscopy (SECM) is presented. With this approach, the detection of the shear force is accomplished by mechanically attaching a set of two piezoelectric plates to the scanning probe. One of the plates is used to excite the SECM tip causing it to resonate, and the other acts as a piezoelectric detector of the amplitude of the tip oscillation. Increasing shear forces in close proximity to the sample surface lead to a damping of the vibration amplitude and a phase shift, effects that are registered by connecting the detecting piezoelectric plate to a dual-phase analogue lock-in amplifier. The shear force and hence distance-dependent signal of the lock-in amplifier is used to establish an efficient, computer-controlled closed feedback loop enabling SECM imaging in a constant-distance mode of operation. The details of the SECM setup with an integrated piezoelectric shear-force distance control are described, and approach curves are shown. The performance of the constant-distance mode SECM with a non-optical detection of shear forces is illustrated by imaging simultaneously the topography and conductivity of an array of Pt-band microelectrodes.  相似文献   

6.
Preparation and characterization of microscopic biochemically active regions are important for the development of miniaturized bioanalytical systems with proteins, such as miniaturized enzyme electrode arrays. Scanning electrochemical microscopy (SECM) has emerged as an ideal tool for prototyping such systems. The technique is based on electrochemical conversions of dissolved species at a micrometer-sized probe electrode. It offers several mechanisms for local surface modifications under conditions compatible with conservation of protein functionality of enzymes and antibodies. The subsequent imaging of the immobilized activity provides direct information about local immobilized enzyme activities. The working modes of the techniques are illustrated by recent studies from this laboratory for the design and characterization of patterned enzyme layers covalently linked to gold surfaces via thiol self-assembly chemistry.  相似文献   

7.
Multilayer films of glucose oxidase (GOx) and poly(dimethyl diallyl ammonium chloride) (PDDA) prepared by layer-by-layer deposition were studied using scanning electrochemical microscopy (SECM). Aminated glass slides were coated with five bilayers of poly(styrene sulfonate) (PSS) and PDDA and used as substrates onto which GOx/PDDA multilayers were deposited. UV-Vis experiments confirmed multilayer growth, scanning force microscopic images provided morphological information about the films. SECM current-distance curves enabled the determination of kinetic information about GOx in GOx/PDDA multilayers as a function of layer number, film termination, inert covering layers, and enzyme substrate concentration after fitting to numerical models. The results indicate that only the topmost layers contributed significantly to the conversion. An odd-even pattern was observed for PDDA-terminated films or GOx-terminated films that correlated with morphological changes.  相似文献   

8.
The features of experimental approach curves, recorded in scanning electrochemical microscopy measurements, and acquired with a series of sphere-cap tips while approaching a solid insulating substrate, are examined in detail. Sphere-caps are prepared by electrodeposition of liquid mercury onto a platinum microdisk substrate 10 μm radius, and having RG=R/a=10 (R is total tip dimension, which includes the shield thickness and the electrode radius a). From the data obtained, it is established that sphere caps with aspect ratio h/a>0.3 (h is the sphere cap height) are able to touch, or even be squeezed against the surface of the solid substrate. Under these latter conditions, for the sphere caps, the negative feedback process at low tip–substrate distances, is more pronounced than that of the corresponding naked microdisk. A good tip stability and no mercury loss is observed upon touching the substrate for sphere caps with h/a<1.3. This circumstance allows one to perform “contact” voltammetric measurements of lead ions adsorbed onto a thin layer chromatography plate.  相似文献   

9.
An approach for patterning surfaces with prepared nanoparticles is described. Chitosan-stabilized gold nanoparticles (Au/chitosan NPs) were locally deposited on stainless steel (StSt), indium tin oxide (ITO), and highly-ordered pyrolytic graphite (HOPG). Deposition was driven by local pH gradient formed between a surface and a scanning electrochemical microscopy tip set in the direct mode. The pH at the substrate was increased upon biasing the surface by negative potentials, which caused the reduction of water. As the pH on the surface exceeded that of $ {\mathrm{pK}}_{{\mathrm{chitosanH}}^{+}}\sim 6.3 $ deprotonation of the amino groups of chitosan caused the irreversible deposition of the chitosan/AuNPs. The effect of different parameters, such as tip–surface distance and time, on deposition was studied. While the potential duration showed no clear influence, smaller tip–substrate distance and more negative potentials applied to the surface caused larger deposits. The overpotential needed for the deposition of nanoparticles on HOPG was the highest while that for StSt was the lowest. On the former, the sluggish kinetics caused the deposition of ring-shaped structures while disk-shaped deposits were formed on the other surfaces.  相似文献   

10.
Kaya T  Numai D  Nagamine K  Aoyagi S  Shiku H  Matsue T 《The Analyst》2004,129(6):529-534
The metabolic activity of E. coli cells embedded in collagen gel microstructures in a cone-shaped well and in a cylindrical micropore was investigated using scanning electrochemical microscopy (SECM), based on the oxygen consumption rate and the conversion rate from ferrocyanide to ferricyanide. The analysis of the concentration profiles for oxygen and ferrocyanide afforded the oxygen consumption rate and the ferrocyanide production rate. A comparison indicated that the ferrocyanide production rates were larger than the oxygen consumption rate, and also that the rates observed in the cylindrical micropore were larger than those observed in the cone-shaped well. The ferrocyanide production rate of a single E. coli cell was calculated to be (5.4 +/- 2.6) x 10(-19) mol s(-1), using a cylindrical micropore system.  相似文献   

11.
The anodic reaction of Ni in an alkaline solution was studied by the tip–substrate voltammetry mode of scanning electrochemical microscopy (SECM) and cyclic voltammetry (CV). A platinum microdisc electrode was selected as the tip electrode, which functioned as a pH sensor with transient response capability. The pH value of the solution near the Ni electrode surface varied while the Ni substrate oxidation reaction occurred, and the pH variation could be detected by the tip faradic current. The cyclic voltammogram results showed that two types of hydroxides: i.e. α‐Ni(OH)2 and β‐Ni(OH)2 were formed during Ni oxidation in the lower potential region. In the proceedings of α‐Ni(OH)2 → γ‐NiOOH and β‐Ni(OH)2 → β‐NiOOH, the process of OH? concentration decrease in the solution was ahead and behind of electron transfer in the solid phase, respectively. These results indicate that the OH? adsorption process occurs as an elementary step in the former reaction and the H+ diffusion process from the inner to the outer layer of the solid phase occurs as a subsequent step in the latter reaction. The results also revealed that the oxide film on the Ni surface has a two‐layer structure. The real potential of the oxygen evolution reaction (OER) on the Ni surface with different cycles is also analyzed in the paper. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
This work establishes the compatibility of surface plasmon resonance imaging (SPR-i) with the visualization of localized electropolymerization. The "writing" of polypyrrole and polypyrrole-oligonucleotide patterns onto thin gold films is demonstrated using scanning electrochemical microcopy (SECM), while an optical method, SPR-i, simultaneously detected the formed micropatterns. The combination of these two methods, SECM/SPR-i, has the advantage of not only controlling the patterning process but also providing unique information on the micropattern formation. The influence of the pulsing time and the monomer concentration on the spot size and its characteristics has been investigated in detail using SPR-i. Fluorescence microscopy and atomic force microscopy have also been used to support the data obtained by SPR-i.  相似文献   

13.
Eckhard K  Schuhmann W 《The Analyst》2008,133(11):1486-1497
Alternating current scanning electrochemical microscopy (AC-SECM) is a growing branch within the variety of SECM methods. This review covers publications involving AC-SECM from its beginning to date. The findings of several research groups are thematically structured along with the specific experimental procedures. This should enable researchers to rationally choose purposeful parameters for their AC-SECM experiments.  相似文献   

14.
This work presents a scanning electrochemical microscopy (SECM)-based in situ corrosion probing methodology that is capable of monitoring the release of zinc species in corrosion processes. It is based on the use of Hg-coated Pt microelectrodes as SECM tips, which offer a wider negative potential range than bare platinum or other noble-metal tips. This allows for the reduction of zinc ions at the tip to be investigated with low interference from hydrogen evolution and oxygen reduction from aqueous solutions. The processes involved in the corrosion of zinc during its immersion in chloride-containing solutions were successfully monitored by scanning the SECM tip, set at an adequate potential, across the sample either in one direction or in the X-Y plane parallel to its surface. In this way, it was possible to detect the anodic and cathodic sites at which the dissolution of zinc and the reduction of oxygen occurred, respectively. Additionally, cyclic voltammetry (CV) or constant potential measurements were used to monitor the release of zinc species collected at the tip during an SECM scan.  相似文献   

15.
Small-diameter (ca. 0.7 nm) single-wall carbon nanotubes are predicted to display enhanced reactivity relative to larger-diameter nanotubes due to increased curvature strain. The derivatization of these small-diameter nanotubes via electrochemical reduction of a variety of aryl diazonium salts is described. The estimated degree of functionalization is as high as one out of every 20 carbons in the nanotubes bearing a functionalized moiety. The functionalizing moieties can be removed by heating in an argon atmosphere. Nanotubes derivatized with a 4-tert-butylbenzene moiety were found to possess significantly improved solubility in organic solvents. Functionalization of the nanotubes with a molecular system that has exhibited switching and memory behavior is shown. This represents the marriage of wire-like nanotubes with molecular electronic devices.  相似文献   

16.
We illustrate in this paper the successful combination of the direct and feedback mode of scanning electrochemical microscopy (SECM) for the writing of oligonucleotide patterns on thin gold films alongside the imaging of DNA hybridization. The patterning process was achieved using the direct mode of SECM, where the electrical field established between the SECM tip and the gold interface was used to drive the local deposition of micrometre sized polypyrrole spots to which a 15(mer) oligonucleotide (ODN) strand was linked covalently. Imaging of the deposited polypyrrole-ODNs was achieved by means of the feedback mode of SECM using Ru(NH(3))(6)(3+) as the mediator. The detection of the hybridization reaction of the ODN probes with their biotinylated complementary strands using SECM was possible after subsequent reactions with streptavidin and biotinylated horseradish peroxidase (HRP). The HRP-biocatalyzed oxidation of 4-chloro-1-naphthol (1) in the presence of H(2)O(2), and the precipitation of the insoluble product 4-chloro-1-naphthon (2) on the hybridized areas on the gold film caused a local alteration of conductivity. Such a change in conductivity was sensitively detected by the SECM tip and allowed imaging of DNA arrays in a fast and straightforward way.  相似文献   

17.
Cytochrome c was electrostatically immobilized onto a COOH-terminated alkanethiol self-assembled monolayer (SAM) on a gold electrode at ionic strengths of less than 40 mM. Scanning electrochemical microscopy (SECM) was used to simultaneously measure the electron transfer (ET) kinetics of the bimolecular ET between a solution-based redox mediator and the immobilized protein and the tunneling ET between the protein and the underlying gold electrode. Approach curves were recorded with ferrocyanide as a mediator at different coverages of cytochrome c and at different substrate potentials, allowing the measurement of k(BI) = 2 x 10(8) mol(-1) cm3 s(-1) for the bimolecular ET and k degrees = 15 s(-1) for the tunneling ET. The kinetics of ET was also found to depend on the immobilization conditions of cytochrome c: covalent attachment gave slightly slower tunneling ET values, and a mixed CH3/COOH-terminated ML gave faster tunneling ET rates. This is consistent with previous studies and is believed to be related to the degree of mobility of cyt c in its binding configuration and its orientation with respect to the underlying electrode surface.  相似文献   

18.
Electrochemical reduction of the diazonium salts of 4-nitrobenzene and 4-nitroazobenzene-4'- has been investigated in aqueous acid and acetonitrile media at carbon surfaces. Using pyrolyzed photoresist films as the substrate, we have examined the deposited films using electrochemistry and atomic force microscopy (AFM). Film thicknesses were measured by scratching through the film with an AFM tip. The procedure employed two AFM cantilevers with different lengths, located on the one device. When the shorter cantilever engages the surface in tapping mode, the longer cantilever (which is not resonating) imbeds into the surface with a constant force. For both modifiers and modification media, film thicknesses increase with deposition time to a limiting value. With equivalent modification conditions, films prepared in aqueous acid medium have lower limiting thicknesses than those prepared in acetonitrile. For nitrophenyl (NP) films, the same trends are found when calculating surface coverages from the charge associated with the reduction of surface -Ar-NO2 groups. Lower limiting film thicknesses and surface coverages for films prepared in aqueous conditions is attributed to growth of inherently more blocking films and is supported by examination of the response of the Fe(CN)6(3-/4-) couple at NP-modified surfaces. Combination of voltammetrically determined surface coverage and film thickness data yields a surface coverage of -Ar-NO2 groups of (2.5 +/- 0.5) x 10(-10) mol cm(-2) for a film thickness equivalent to a monolayer of NP groups.  相似文献   

19.
Scanning electrochemical microscopy (SECM) has been performed in the restricted space of nanolitre droplets with a robust and easy-to-handle coaxial electrode assembly centring a Pt microdisk in a circular Ag electrode. Straightforward and reproducible fabrication of the specially designed probe tips was achieved by using Tollens reaction to chemically deposit a uniform and well-adhering layer of silver on the body of a glass-insulated Pt microdisk electrode. The suitability of the novel dual-electrode SECM tip for measurement in small volumes was evaluated by imaging an array of four Pt band microelectrodes in 500 nL electrolyte.  相似文献   

20.
The electrochemically induced functionalization of glassy carbon electrode by aryl groups having an aliphatic amine group was achieved by reduction of in situ generated diazonium cations in aqueous media. The corresponding diazonium cations of 4-aminobenzylamine, 2-aminobenzylamine, 4-(2-aminoethyl)aniline, N-methyl-1,2-phenylenediamine, and N, N-dimethyl- p-phenylenediamine were generated in situ with sodium nitrite in aqueous HCl. The kinetics of electrochemical grafting were investigated with electrochemical impedance spectroscopy and electrochemical quartz crystal microbalance measurements (with carbon-coated quartz crystal), and the barrier properties of the grafted layers were evaluated by cyclic voltammetry in the presence of electroactive redox probes such as Fe(CN)6 3-/4- and Ru(NH 3)6 (3+). The grafting efficiency of aryl groups was found to depend on the nature of the amine (primary, secondary, and tertiary), the chain length of the alkyl substituent, and the substitution position on the aromatic ring. The nitrosation of the "aliphatic" amine, in the case of secondary and tertiary amines, was also evidenced by X-ray photoelectron spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号