首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物沥浸深度脱水污泥为主料,四种农林有机废物为辅料,设4个处理组(T1:污泥+甘蔗渣、 T2:污泥+秸秆、 T3:污泥+米糠、 T4:污泥+木屑)进行混合堆肥,采用紫外-可见光谱(UV-Vis)、傅里叶变换红外光谱(FTIR)和三维荧光光谱(3D-EEM),研究不同辅料堆肥过程中溶解性有机质(DOM)结构特征和组分含量的演化规律。UV-Vis结果显示,四个处理组在堆肥过程中DOM的芳香度和不饱和度皆有所增加,其中T3处理组的增加幅度最大。四个处理组的紫外参数SUVA254和SUVA280均呈现递增趋势,其中T3处理组的变化幅度高于其他三个处理组,表明芳构化程度加深,DOM分子量逐渐加大;E253/E203和E253/E220在堆肥结束时显著增加,表明DOM中苯环上的脂肪链发生氧化分解,转化为羧基羰基等官能团,A226~400随堆肥进行增加而E250/E365减小,表明共轭程度增加。FTIR结...  相似文献   

2.
Sludge dewatering has proven to be an effective method to reduce the volume of sludge. In this study, drinking water treatment sludge (DWTS) was treated by ultra-sonication under variable conditions comparing two sonoreactor types (bath and probe), four frequencies (25, 40, 68, 160 kHz) and four energy density levels (0.03, 1, 3, 5 W/mL). The effects of these conditions were studied using specific resistance to filtration and capillary suction time as measures of dewaterability, and floc size, the Brunauer, Emmett and Teller (BET) specific surface area and Zeta potential to determine treated sludge characteristics. The results indicated that the dewaterability of sonicated sludge improved at relatively low energy densities of 0.03 and 1.0 W/mL, while an optimum for sonication duration (within 10 min) was also identified. Higher frequencies (tested up to 160 kHz) with acoustic energy density of 0.03 W/mL also reduced the dewatering property. At higher energy densities of 3.0 and 5.0 W/mL, dewaterability of sludge deteriorated regardless of ultra-sonication time, with an increase of solubilized organic matter content and severely changed floc characteristics. The deterioration of the dewatering capacity was closely related to the considerably reduced floc sizes, dissolution of proteins and polysaccharides, and to the Zeta potential of sonicated sludge flocs. The dewaterability was not correlated with BET specific surface area. Mechanistic explanations for the observations were discussed by analyzing corrosion patterns of aluminum foil as a measure for cavitation field distribution.  相似文献   

3.
The pore size distribution is quite significant for determining the transport capacity of heat and moisture in sludge during the drying process. It is crucial to investigate the transformation of the pore size in sludge under sonication. In this paper, the microstructures of pores inside sludge before and after ultrasonic treatment with various ultrasonic conditions were observed using a microscope. Fractal geometry and image analysis were combined to quantitatively identify the evolution of pore size in sludge undergoing various acoustic energy densities and treatment times. The surface fractal dimension (df) was applied to characterize the pore size distribution of sludge. The results confirmed that sonication has a positive influence on the characteristics of pore structure inside the sludge and that the average pore size increases with increasing ultrasonic energy level, as determined by both acoustic energy density and treatment time. The df appropriately characterizes and quantifies the evolution of the pore size distribution of sludge under various ultrasonic conditions. This work is quite valuable for further investigating and evaluating moisture removal in the sludge drying process assisted by ultrasonic treatment.  相似文献   

4.
粘土矿物在催化木质素形成腐殖质方面具有重要贡献。为有效阐明微生物-木质素-粘土矿物三者间的关系,探明矿物-菌体残留物的结构特征,采用液体摇瓶培养法,以木质素为碳源,通过添加高岭石和蒙脱石,在接种复合菌剂后启动110 d液体培养,期间动态收集矿物-菌体残留物,利用傅里叶红外光谱及扫描电子显微镜技术对其结构特性进行了研究。结果表明:高岭石颗粒边缘多由管状体卷曲而成,在参与微生物利用木质素形成矿物-菌体残留物后,连片状细小颗粒结构进一步团聚,结合更加紧凑,短管状结构增多,但整体仍保持多水高岭石的结构特征;在初始富营养条件下,高岭石能够促进微生物繁衍,使大量菌体聚集于高岭石表面,掩蔽了Si-O和Si-O-Al键,且矿物-菌体残留物中脂族碳结构比例增加;菌体中多糖物质通过含氧官能团与高岭石表面的水化层在多个部位形成氢键,氢键的形成对于高岭石稳定木质素及其降解产物具有重要作用,芳香碳结构比例和多糖类物质含量随培养时间逐渐增加,而后复合菌株对掩蔽在矿物表面的菌体进行二次利用,使高岭石Si-O-Al键重现;蒙脱石多由浑圆的颗粒结构组成,接种微生物可使其表面产生溶蚀,团粒结构遭到破碎;与10 d相比,历经30 d培养所得矿物-菌体残留物中的多糖类物质增多,使原本归属蒙脱石Si-O-Si及Si-O结构的1 034~1 038 cm-1处吸收峰强度增加,而后因多糖类物质与蒙脱石表面羟基发生缔合,又使该处吸收峰强度减弱,同时发生了氢键键合,该作用是蒙脱石-微生物-木质素间相互作用、形成矿物-菌体残留物的主要机制;高岭石在稳定有机碳方面的能力要高于蒙脱石,更易促进HS前体物质的形成。  相似文献   

5.
应用红外光谱研究微生物对黑土添加麦秸后腐殖质结构特征变化的影响。结果表明:(1)土壤水溶性物质(WSS)的结构和官能团数量受微生物影响较大。细菌有利于提高WSS中脂肪族烷烃类物质含量,其他处理结果相反。(2)放线菌在减少土壤富里酸(FA)羟基含量的能力最强,而真菌对FA的“净生成”能力最强,其有利于提高土壤FA中羧基和碳水化合物的含量。除混合菌外,其他处理均有利于土壤FA中多糖的降解,且速率大于脂类分解。(3)除混合菌外,其他处理均有利于降低土壤胡敏酸(HA)中脂肪族烷烃类物质的数量。真菌可有效提高土壤HA的羧基含量,而细菌作用相反。微生物可消耗和利用HA中的多糖类物质,促使植物残体类腐殖质向土壤成熟腐殖质转化。  相似文献   

6.
Sonication and thermalization can be applied successfully to disrupt the complex waste activated sludge (WAS) floc structure and to release extra and intra cellular polymeric substances into soluble phase along with solubilization of particulate organic matters, before sludge digestion. In this study, sonication has been combined with thermalization to improve its disintegration efficiency. It was aimed that rise in temperature occurring during the sonication of sludge was used to be as an advantage for the following thermalization in the combined pre-treatment. Thus, the effects of sonication, thermalization and sono-thermalization on physical and chemical properties of sludge were investigated separately under different pre-treatment conditions. The disintegration efficiencies of these methods were in the following descending order: sono-thermalization > sonication > thermalization. The optimum operating conditions for sono-thermalization were determined as the combination of 1-min sonication at 1.0 W/mL and thermalization at 80 °C for 1 h. The influences of sludge pre-treatment on biodegradability of WAS were experienced with biochemical methane potential assay in batch anaerobic reactors. Relative to the control reactor, total methane production in the sono-thermalized reactor increased by 13.6% and it was more than the sum of relative increases achieved in the sonicated and thermalized reactors. Besides, the volatile solids and total chemical oxygen demand reductions in the sono-thermalized reactor were enhanced as well. However, it was determined that sludge pre-treatment techniques applied in this study was not feasible due to their high energy requirements.  相似文献   

7.
《Composite Interfaces》2013,20(2-3):249-267
The effect of atmospheric-pressure plasma treatment on high strength PAN-based carbon fibers had been studied in terms of fiber surface energetics and mode I and II interlaminar fracture toughness of unidirectional carbon fibers/epoxy matrix composites. The surface characterization of plasma treated carbon fibers was investigated by X-ray photoelectron spectroscopy (XPS) and contact angles. As a result, the plasma treatment changed the surface properties of the carbon fibers, mainly through formation of oxygen functional groups like hydroxyl, carbonyl, and carboxyl groups. According to contact angle measurements, it was observed that plasma treatment led to an increase in surface free energy of the fibers, mainly due to the increase of its specific component. Fracture toughness test results employing double-cantilever beam (DCB) and end notched flexure (ENF) specimens also showed that the increase in specific components or hydrogen bonding between the –OH groups on carbon fibers and the =O ring in epoxy matrix resins played an important role in improving the degree of adhesion at interfaces, resulting in an increase in the interfacial fracture toughness of the composites studied.  相似文献   

8.
We report the synthesis of Au nano- and microparticles that relies on α-D-glucose (C6H12O6) as the reducer and stabilizer in a Rosette cell under 20 kHz ultrasound irradiation. The chemical and physical effects of ultrasonic irradiation on the synthesis were investigated. The results showed that an optimum pH is required for the formation of insoluble Au(0) particles. Upon irradiation, low pH yielded Au nanoparticles while high pH resulted in microparticles. The Au surface capping by α-D-glucose hydroxyl and carbonyl groups was confirmed by Fourier transform infrared (FT-IR) spectroscopy. X-ray diffraction (XRD) analysis indicated that the Au particles crystallize within the face-centered-cubic (FCC) cell lattice. Moreover, continuous sonication reduced larger amounts of the Au precursor compared to the intermittent mode. Furthermore, tuning sonication time and mode influences the particle size and porosity as characterized by scanning and transmission electron microscopy. Our results shed a new light into the importance of the experimental and ultrasound parameters in obtaining Au particles of desired features through sonochemistry.  相似文献   

9.
The effect of ultrasound on particle shape and surface structure was explored to understand particle characteristics affecting contaminant desorption and destruction from sediment particles. Compared to only hydrodynamic mixing, in the presence of an ultrasonic probe, operating at 20 kHz with a power density of 460 Wl-1, sonication decreased the particle size of alumina and silica particles following a first-order regime. In addition, the dissolution of particles during sonication is 7-20 times higher than that of non-sonicated solutions. However, the decrease of particle size was not totally explained by dissolution. Scanning electron microscopy studies showed that the surface of particles both became smoothed and pitted as a result of sonication. Therefore, it seems that multiple mechanisms are occurring simultaneously; microstreaming acts to smooth particle surfaces and dissolve particles and shockwaves and microjets imploding on the particle surfaces both shear and pit the surface of the particles. The sonication of humic acid laden particles resulted in a similar decreasing trend. However, the existence of humic acid increased the complexity of the system.  相似文献   

10.
Commercial zinc oxide nanoparticles were modified by polymethacrylic acid (PMAA) in aqueous system. The hydroxyl groups of nano-ZnO particle surface can interact with carboxyl groups (COO-) of PMAA and form poly(zinc methacrylate) complex on the surface of nano-ZnO. The formation of poly(zinc methacrylate) complex was testified by Fourier-transform infrared spectra (FT-IR). Thermogravimetric analysis (TGA) indicated that PMAA molecules were absorbed or anchored on the surface of nano-ZnO particle, which facilitated to hinder the aggregation of nano-ZnO particles. Through particle size analysis and transmission electron micrograph (TEM) observation, it was found that PMAA enhanced the dispersibility of nano-ZnO particles in water. The dispersion stabilization of modified ZnO nanoparticles in aqueous system was significantly improved due to the introduction of grafted polymer on the surface of nanoparticles. The modification did not alter the crystalline structure of the ZnO nanoparticles according to the X-ray diffraction patterns.  相似文献   

11.
Ultrasound technology, which is environment-friendly and economical, has emerged as a novel strategy that can be used to enhance the partial nitrification process. However, its effect on this process remains unclear. Therefore, in this study, partial nitrification sludge was subjected to low-intensity (0.15 W/mL) ultrasound treatment for 10 min, and the effect of ultrasonic treatment on the partial nitrification process was evaluated based on changes in reactor performance, sludge characteristics, and the properties of extracellular polymeric substances (EPS). The results obtained showed that the ultrasonic treatment enhanced nitrite accumulation performance as well as the activity of ammonia-oxidizing bacteria from 3.3 to 16.6 mg O2/g VSS,⋅while inhibiting the activity of nitrite-oxidizing bacteria. Further analysis showed that owing to the ultrasonic treatment, there was an increase in EPS contents. Particularly, there was a significant increase in loosely bound polysaccharide (PS) contents, indicating the occurrence of intracellular PS anabolics as well as PS secretion. Additionally, ultrasonic treatment induced a significant increase in carbonyl, hydroxyl, and amine functional group contents, and EPS analysis results revealed that it had a positive effect on mass transfer efficiency; thus, it enhanced the partial nitrification process. Overall, this study describes the effect of intermittent low-intensity ultrasound on the partial nitrification process as well as the associated enhancement mechanism.  相似文献   

12.
为研制高灵敏度气体绝缘组合开关(GIS)特征气体检测传感器,利用密度泛函理论方法,采用分子模拟软件对GIS特征气体(SO_2,SOF_2,SO_2F_2,CF_4)在异性官能团(羟基、羧基与氨基)修饰石墨烯表面的吸附过程进行模拟计算,从微观角度研究了GIS特征气体在异性官能团修饰石墨烯表面的吸附机理.首先计算了各吸附体系的吸附能、净电荷转移量以及态密度,比较了羟基与羧基修饰石墨烯对GIS特征气体的吸附能力;再通过分子前线轨道与能隙对吸附能力强弱的机理进行了研究,得出强吸附修饰官能团的规律性特征,并通过氨基石墨烯进行验证.结果表明:羧基与羟基修饰石墨烯能够有效提高对SO_2,SOF_2,SO_2F_2的吸附能力,但羧基石墨烯对GIS特征气体的整体吸附能力更强;异性官能团修饰石墨烯后的能隙及其与气体分子前线轨道能量差越小,对GIS特征气体吸附能力就越强,异性官能团修饰石墨烯的能隙与前线轨道能量差可以作为选择特征气体敏感材料的依据.  相似文献   

13.
Molecular dynamics simulations were employed to study the effects of oxygen functional groups for structure and dynamics properties of interfacial water molecules on the subbituminous coal surface. Because of complex composition and structure, the graphite surface modified by hydroxyl, carboxyl and carbonyl groups was used to represent the surface model of subbituminous coal according to XPS results, and the composing proportion for hydroxyl, carbonyl and carboxyl is 25:3:5. The hydration energy with ?386.28 kJ/mol means that the adsorption process between water and coal surface is spontaneous. Density profiles for oxygen atoms and hydrogen atoms indicate that the coal surface properties affect the structural and dynamic characteristics of the interfacial water molecules. The interfacial water exhibits much more ordering than bulk water. The results of radial distribution functions, mean square displacement and local self-diffusion coefficient for water molecule related to three oxygen moieties confirmed that the water molecules prefer to absorb with carboxylic groups, and adsorption of water molecules at the hydroxyl and carbonyl is similar.  相似文献   

14.
The performance of a novel low-maintenance tube reactor for ultrasonic treatment of sludge has been evaluated. The effects of sonication on the release of soluble chemical oxygen demand (sCOD) and anaerobic digestibility of raw and digested sewage sludge as well as agricultural sludge were studied. Results suggest that solubilization and digestibility is dependent on both type of sludge and the energy input. Digested and raw sludge showed high degree of solubilization, however, methane production was only increased for digested sludge. Agricultural sludge was not significantly affected by ultrasonic treatment neither concerning sCOD release nor methane production. The configuration of the ultrasonic system (serial vs. parallel operation) did not show a significant difference in both sCOD release and methane production. However, parallel operation tends to perform better for digested sludge, while serial operation tends to perform better for raw sludge. The strongest effect was observed for the treatment of digested sludge by increasing the methane production by more than 60%, although with a very intensive energy input of more than 5,000 kJ per kg total solids. Hence, tube reactors seem to be an attractive alternative to sonotrode-based systems achieving similar performance at low maintenance with great potential especially for digested sludge.  相似文献   

15.
为了研究草原七壤退化与恢复机制,以锡林郭勒盟草原生态定位站长期定位实验为基础,采集了围栏禁牧、轻度放牧与过度放牧等放牧管理措施样地的土壤样品,提取其中的胡敏酸,综合应用元素分析、傅里叶变换红外光谱、固相魔角旋转13C核磁共振谱对放牧和围栏的羊草草原样地表层土胡敏酸的分子结构特征进行了比较分析.研究表明:在围栏禁牧和放牧条件下相比,土壤胡敏酸的分子结构特性存在明显的差异,围栏样地的胡敏酸结构其芳香度明显降低,显示出更高的脂肪族特性,羧酸官能团含量降低.经过围栏样地禁牧恢复的土壤胡敏酸结构中含有更多的来源多糖和蛋白质类母体的结构单元,而不同放牧强度之间胡敏酸的结构组成差异不大.  相似文献   

16.
The effectiveness of tube and sonotrode reactors for the sonication of sewage sludge under identical conditions was compared for the first time. Despite the considerable structural differences, sonication with each ultrasonic reactor led to an accelerated degradation rate and an increased methane production within the first five days for the majority of the sewage sludge samples tested. On closer examination, however, it becomes clear that the investigated sonication systems are not equally suitable for the substrates considered. While the use of a sonotrode proved to be particularly advantageous for the treatment of waste activated sludge (+25% methane yield at 300 kJ/kgTS), the use of a 2-inch tube reactor achieved the highest enhancement for low-intensity sonication in digested sludge (+22% methane yield at 300 kJ/kgTS). With increasing energy input, more chemical oxygen demand was solubilized, but this did not result in an increase in methane yield for all samples. Sonication of waste activated sludge led to a significant reduction in viscosity of up to 50%, and a reduction of up to 60% was observed after sonication of digested sludge with low energy inputs. The study, therefore, demonstrates that the choice of the most suitable sonication system essentially depends on the properties of the sludge to be sonicated.  相似文献   

17.
For the first time, micro/nano-sized lead iodide hydroxide; Pb(OH)I, has been successfully prepared via a simple ultrasonic method. In this method, lead nitrate and lithium iodide were applied as starting reagents to fabricate Pb(OH)I micro/nanostructures at different conditions. The effect of different surfactants like N,N-bis(salicylidene)-ethylenediamine (H2salen), sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP), sonication time, and ultrasonic intensity on the morphology and particle size of the products has been investigated. The as-produced micro/nanostructures were characterized with the aid of XRD, SEM, TEM, UV–vis, EDS and FT-IR. According to the SEM images, different morphologies of Pb(OH)I including micro- and nano-sized rods were formed by changing the preparation conditions. Based on the XRD results, it was found that Pb(OH)I and PbI2 have been produced with and without sonication at the same conditions, respectively. The use of the H2salen and sonication treatment were confirmed to be the crucial factors determining the formation of one-dimensional Pb(OH)I micro/nanostructures.  相似文献   

18.
A Keggin-type heteropolyanion compound (HPO) was doped within the montmorillonite (MMT) structure by impregnation method. The synthesized catalyst was characterized by FT-IR, XRD, UV–vis, CV, SEM and elemental analysis. Based on chemical adsorption between HPO, and hydroxyl surface groups, HPOs nanoparticles were successfully located on the MMT. Moreover, the obtained nanocomposite was found as an efficient catalyst for oxidation of hydrocarbons under reflux and ultrasonic irradiation conditions.  相似文献   

19.
Protein oxidation leads to covalent modification of structure and deterioration of functional properties of quinoa protein. The objective of this study was to investigate the effects of ultrasonic treatment on the functional and physicochemical properties of quinoa protein oxidation aggregates. In this concern, 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH) was selected as oxidative modification of quinoa protein. The microstructure of quinoa protein displayed by scanning electron microscope (SEM) indicated that oxidation induced extensive aggregation, leading to carbonylation and degradation of sulfhydryl groups. Aggregation induced by oxidation had a negative effect on the solubility, turbidity, emulsifying stability. However, according to the analysis of physicochemical properties, ultrasonic significantly improved the water solubility of quinoa protein. The quinoa protein treated by ultrasonic for 30 min exhibited the best dispersion stability in water, which corresponded to the highest ζ-potential, smallest particle size and most uniform distribution. Based on the FT-IR, SDS-PAGE and surface hydrophobicity analysis, the increase of α-helix, β-turn and surface hydrophobicity caused by cavitation effect appeared to be the main mechanism of quinoa protein solubilization. In addition, the hydrophobic region of the protein was re-buried by excessive ultrasonic treatment, and the protein molecules were reaggregated by disulfide bonds. Microstructural observations further confirmed that ultrasonic treatment effectively inhibited protein aggregation and improved the functional properties of quinoa protein.  相似文献   

20.
采用不同化学屏蔽方法和傅里叶变换红外光谱(FTIR)分析,对灭活酿酒酵母菌吸附展青霉素的机理进行了研究。化学屏蔽法与酿酒酵母菌对展青霉素的吸附结果表明:酿酒酵母菌经过丙酮和NaOH处理后对展青霉素的吸附明显增加,而经过氨基甲基化和羧基酯化处理的酵母菌对展青霉素的吸附能力显著下降,细胞壁上的羧基和氨基参与了吸附过程。红外光谱分析结果表明,吸附前后红外光谱图发生了一些变化,与变化有关的主要是存在于细胞壁蛋白质和糖类上的氨基、羧基和羟基。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号