首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have investigated SeO2 at high pressures and high temperatures. Two new phases (β-SeO2 and γ-SeO2) and the boundary separating them have been found, following experimental runs performed at pressures up to 15 GPa and temperatures up to 820°C. The two phases crystallize in the orthorhombic system in space group Pmc21 (no. 26) with a=5.0722(1) Å, b=4.4704(1) Å, c=7.5309(2) Å, V=170.760(9) Å3 and Z=4 for the β-phase, and with a=5.0710(2) Å, b=4.4832(2) Å, c=14.9672(6) Å, V=340.27(3) Å3 and Z=8 for the γ-phase. Both phases are stable at ambient pressure and temperature below −30°C. At ambient temperature the phases return to the starting phase (α-SeO2) in a few days. We discuss our findings in relation to a previous report of in-situ measurements at high pressures and ambient temperature.  相似文献   

2.
The solubility in the three-component (NH4)2SeO4–BeSeO4–H2O system is studied at 25 °C by the method of isothermal decrease of supersaturation. (NH4)2Be(SeO4)2·2H2O crystallizes from solutions containing 31.35 mass% beryllium selenate and 30.66 mass% ammonium selenate up to solutions containing 26.84 mass% beryllium selenate and 46.84 mass% ammonium selenate. The X-ray powder diffraction data show that (NH4)2Be(SeO4)2·2H2O is isostructural with the respective K2Be(SeO4)2·2H2O, K2Be(SO4)2·2H2O and Rb2Be(SO4)2·2H2O. (NH4)2Be(SeO4)2·2H2O crystallizes in the monoclinic space group P21/c: a = 11.747(3) Å, b = 12.212(4) Å, c = 7.649(2) Å, β = 96.94(3)°, V = 1089.3(3) Å3, Z = 4. Vibrational spectra (infrared and Raman) of the title compound are presented and discussed with respect to the internal modes of both the ammonium and the selenate tetrahedra, hydrogen bond strengths and the lattice vibrations of the BeO4 tetrahedra (skeleton vibrations).  相似文献   

3.
A new compound, Rb4Be(SeO4)2(HSeO4)2·4H2O, crystallizes in a comparatively wide concentration range from mixed beryllium rubidium selenate solutions (from solutions containing 29.06 mass% beryllium selenate and 25.75 mass% rubidium selenate up to solutions containing 12.53 mass% beryllium selenate and 55.32 mass% rubidium selenate).Rb4Be(SeO4)2(HSeO4)2·4H2O crystallizes in the acentric orthorhombic space group Pmn21 (a = 32.607(4), b = 10.676(2), c = 6.069(1) Å, V = 2112.8 Å3, Z = 4, R1 = 0.047 for 4059 Fo > 4σ(Fo) and 311 variables). The crystal structure is composed of Be(H2O)4 tetrahedra arranged in layers at x = 0 and x = ½, alternating with broad layers built up from SeO4 and HSeO4 selenate tetrahedra and Rb cations. The beryllium–water layers are linked to the rest of the structure via hydrogen bonds only. The H2O molecules as well as the OH molecules of the acid HSeO4 groups form strong to very strong hydrogen bonds with donor–acceptor distances between 2.58 and 2.74 Å.Vibrational spectra (infrared and Raman) of Rb4Be(SeO4)2(HSeO4)2·4H2O are presented and discussed in the region of the fundamentals of both the selenate and the beryllium tetrahedra (skeleton motions) as well as in the region of the OH vibrations at ambient and liquid nitrogen temperature (LNT). The appearance of four Raman bands corresponding to ν1 of the selenate ions reflects the existence of four crystallographically different selenate tetrahedra in the structure. The spectroscopic experiments reveal that the ν1 modes of the selenate ions appear at higher frequencies than some components of ν3. Bands of an AB doublet structure (2950, 2390 cm?1) arising from the OH stretching modes of the HSeO4- ions are recognized in the infrared spectra. The appearance of two infrared bands (1308, 1250 cm?1) corresponding to δ(OH) (in-plane bending modes of the OH groups) confirms the structural data regarding the existence of two crystallographically different OH groups. The water librations are also briefly commented. The appearance of a band at a comparatively large wavenumber (1013 cm?1) corresponding to rocking librations of the water molecules indicate that strong hydrogen bonds are formed in the title compound.  相似文献   

4.
《Polyhedron》2005,24(6):723-729
The mixed ligand complex [La(hfa)3(Phen)2] (I) was obtained by the interaction of La(hfa)3 and Phen; its composition does not depend on the stoichiometry of the reagents. According to the X-ray single crystal analysis data, complex I crystallizes in the monoclinic space group P21/n, with a = 13.583(3) Å, b = 16.959(3) Å, c = 18.860(4) Å, β = 94.71(3)° and Z = 4. The structure of I consists of isolated mononuclear molecules, the coordination number of La being 10. Thermal behaviour and composition of the vapor phase have been studied for I by thermal analysis and mass-spectrometry using a Knudsen cell. The mixed ligand complex I was found to sublime congruently in the temperature range 370–460 K: [La(hfa)3(Phen)2](s) = [La(hfa)3(Phen)](g) + Phen(g), ΔrH0(T) = 316.2 ± 1.8 kJ/mol.  相似文献   

5.
《Solid State Sciences》2007,9(11):1036-1048
The structure of [C3N2H5]4[Bi2Br10]·2H2O, (PBB) was determined by single crystal X-ray diffraction at 100 K. It crystallizes in the monoclinic space group C2/m, with a = 12.992(4) Å, b = 16.326(5) Å, c = 8.255(3) Å, β = 108.56°(3), V = 1659.9(9) Å3 and Z = 2. The structure consists of discrete binuclear [Bi2Br10]4− anions, ordered pyrazolium cations and water molecules. The crystal packing is governed by strong N–H⋯O and weak O–H⋯Br hydrogen bonds. A sequence of structural phase transitions in PBB was established on the basis of differential scanning calorimetry and dilatometric studies. Two reversible first-order phase transitions were found: (I  II) at 381/371 K (on heating/cooling) and (II  III) at 348/338 K. Dielectric response near both phase transitions is characteristic of crystals with the “plastic-like” phases. Over the phase III a low frequency dielectric relaxator is disclosed. The possible molecular motions in the PBB compound are characterized by the 1H NMR studies. The infrared spectra of polycrystalline compound in the temperature range 300–380 K are reported for the region 4000–400 cm−1. The observed spectral changes through the structural phase transition III  II are attributed to an onset of motion both of the pyrazolium cations and water molecules.  相似文献   

6.
A novel zinc diphosphonate, Zn[HO3PCH2(C6H4)CH2PO3H] (1) was synthesized from tetraethyl para-xylylenediphosphonate, Et2O3PCH2C6H4CH2PO3Et2, and Zn (AcO)2·2H2O under solvothermal conditions. The structure of compound 1 was determined by single-crystal X-ray diffraction, which reveals that the structure crystallizes in the monoclinic space group C2/c (No. 15), with a = 22.4844(19) Å, b = 6.4361(5) Å, c = 8.1194(7) Å, β = 102.595(2)°, V = 1146.70(16) Å3, T = 298(2) K, Z = 8. The novel three-dimensional (3D) construction is simply built up from linear inorganic chains of corner-sharing four-rings of tetrahedral [ZnO4] and [PO3C] which connected adjacent chains by the organophosphorus ligand para-xylylenediphosphonate. The framework has 10 Å × 4 Å (containing the van der Waals radii of atoms) channels running along the b-axis.  相似文献   

7.
《Solid State Sciences》2007,9(8):686-692
Hydrothermal reactions of 2-quinolinephosphonic acid (1) and CuSO4 or CdSO4 result in two new compounds with formula Cu(2-C9H6NPO3) (2) and Cd(2-C9H6NPO3)(H2O) (3). Compound 2 has a layer structure in which dimers of edge-sharing {CuO4N} square-pyramids are linked by {CPO3} tetrahedra through corner sharing. Compound 3 shows a new type of layer structure where chains of corner sharing {CdO5N} octahedra are connected by {CPO3} tetrahedra into an inorganic layer. The quinoline groups fill in the inter-layer spaces in both cases. Crystal data for 1: monoclinic, space group P21/c, a = 10.270(2) Å, b = 13.566(3) Å, c = 6.9818(16) Å, β = 101.916(4)°, V = 951.8(4) Å3, Z = 4. For 2: monoclinic, space group P21/c, a = 13.976(3) Å, b = 7.9398(18) Å, c = 7.8687(18) Å, β = 101.150(5)°, V = 856.7(3) Å3, Z = 4. For 3: monoclinic, space group P21/c, a = 17.164(4) Å, b = 5.4870(12) Å, c = 10.850(2) Å, β = 101.557(4)°, V = 1001.1(4) Å3, Z = 4. The magnetic measurement on 2 reveals a dominant antiferromagnetic exchange coupling between the Cu(II) centers. A quasi-reversible electrochemical reaction is observed for complex 2 immobilized on the surface of GC electrode, corresponding to the redox couple Cu2+/Cu+. The fluorescent properties of 13 are also investigated.  相似文献   

8.
The title compound MIL-131 (MIL stands for Material from Institut Lavoisier) was prepared hydrothermally (4 days, 473 K, autogenous pressure) in the presence of an organic base (N((CH2)2NH2)3). The structure of MIL-131 or TiIIITiIV(OH)F4(HPO4)·(PO4)·(N((CH2)2NH3)3) has been determined ab initio from X-Ray synchrotron powder diffraction data using simulated annealing methods and was refined in the triclinic space group P-1 (no. 2). MIL-131 exhibits a one-dimensional structure built up from inorganic chains of corner sharing TiO5(OH) titanium(III) octahedra and PO4 and HPO4 phosphate tetrahedra, related to TiO2F4 titanium octahedra. Protonated triamine cations are located between the inorganic motifs, and interact strongly with the mineral network through hydrogen bondings both with terminal fluorine atoms and hydroxo or oxo groups. Multinuclear solid state NMR has allowed a clear attribution of the protons, fluoride, and phosphate groups environment within the framework of MIL-131. The large values of chemical shift anisotropy together with the absence of any 13C NMR response confirmed the presence of paramagnetic titanium(III) species deduced from the crystal structure. Finally, 2D MAS 1H-31P CP-HETCOR NMR correlation experiment gives some insight on the nature of the intra-framework hydrogen bonding.Crystal data for MIL-131: a = 14.109(1) Å, b = 8.462(3) Å, c = 7.179(1) Å, α = 93.772(1)°, β = 96.566(2)°, γ = 98.004(1)°, V = 840.36(2) Å3, z = 2.  相似文献   

9.
Perovskite structured compounds have shown multifunctional properties and therefore attracted attention recently because of their potential applications. To explore such materials we have prepared simple double salts, distorted perovskite structured compounds, Cn2FeCl4, Cn = n-propyl or n-butyl ammonium ions. (C3)2FeCl4 crystallize in orthorhombic space group, Cmc21, having lattice constants a = 7.223(9) Å, b = 7.439(9) Å, c = 25.303(8) Å with unit cell volume of 1359.95 cm3, at room temperature. The overall structure consists of two-dimensional Fe(II)–chloride network, parallel to the ac-plane, interlayered by the ammonium ions. Magnetic measurements using SQUID magnetometer show that these compounds are antiferromagnets with TN  90 K. Preliminary studies using DSC and AC-conductivity have shown promising transitions above room temperature.  相似文献   

10.
The thermal behavior of AgNCO (silver isocyanate) has been studied via thermal analysis, optical spectroscopy, X-ray powder diffraction and transmission electron microscopy. Upon quenching the high temperature polymorph (HT-AgNCO) to room temperature, a new modification has been obtained (q-AgNCO). Its crystal structure was solved from X-ray powder diffraction data and refined by the Rietveld method (Pmmn (no. 59), a = 3.579(3) Å, b = 5.777(4) Å, c = 5.807(2) Å, V = 120.08(3) Å3, Z = 2, T = 295 K). The structure consists of chains of Ag+ ions bridged by isocyanate units. HT-AgNCO exists between T = 135 °C and the melting/decomposition point and exhibits virtually free rotation of the complex anions. According to preliminary single-crystal studies, HT-AgNCO (C2/m, a = 5.87 Å, b = 3.51 Å, c = 5.81 Å, ß = 105.953°, Z = 2, T = 373 K) is structurally related to α-NaN3. The crystal structures of both, HT-AgNCO and q-AgNCO have been compared with that of the room temperature modification (RT-AgNCO). The thermal behavior and the ionic conductivity of AgNCO are discussed with respect to the related compounds AgN3 and KSCN. Decomposition of AgNCO proceeds in distinct steps, as seen from TGA, and results in the formation of nanoparticles of elemental silver and an amorphous polymer consisting of C, N and O, only.  相似文献   

11.
We have extended our research interest on titanium oxyphosphates (MII(TiO)2(PO4)2, with MII = Mg, Fe, Co, Ni, Cu, Zn) to vanadium oxyphosphates MII(VIVO)2(PO4)2 (MII = Co, Ni). For each compound two phases, named α and β according to synthesis conditions, have been stabilized at room temperature, then characterized. The four crystal structures M(VO)2(PO4)2 (α and β for M = Co, Ni) have been determined in monoclinic P21/c space group using X-ray single crystals diffraction data. Structure of the α phase is derived from the Li(TiO)(PO4) (orthorhombic Pnma) and LiNi0.50(TiO)2(PO4)2 (monoclinic P21/c) types, with cell parameters: a = 6.310(1) Å, b = 7.273(1) Å, c = 7.432(1) Å, β = 90.43(1)° for M = Co, and a = 6.297(2) Å, b = 7.230(2) Å, c = 7.421(2) Å, β = 90.36(2)° for M = Ni. Structure of the β phase is derived from the Ni(TiO)2(PO4)2-type (monoclinic P21/c) with cell parameters: a = 7.2742(2) Å, b = 7.2802(2) Å, c = 7.4550(2) Å, β = 120.171(2)° for M = Co, and a = 7.2691(2) Å, b = 7.2366(2) Å, c = 7.4453(2) Å, β = 120.231(2)° for M = Ni. All these structures consist of a three dimensional (3D) framework built up of infinite chains of tilted corner-sharing [VO6] octahedra, cross-linked by corner-sharing [PO4] tetrahedra. The M2+ ion (M = Co, Ni) is located in a triangular based antiprism which shares faces with two [VO6] octahedra. Structural filiation is discussed based on a common structural unit, a sheet where divalent cations M2+ (M = Co, Ni) are inserted. A thermal study of the α ? β transition is also presented.  相似文献   

12.
A new complex of oxovanadium(IV), V2O2[(HB(pz)3)2(pyrro)2 (1) and a dimer-dithio carboxyl compound (C5H8NS2)2 (2) have been synthesized by the reaction of VOSO4·nH2O with NaHB(pz)3 and pyrrolidine dithio carboxylic acid ammonium salt. They were characterized by element analysis, IR spectra, UV–vis spectra and X-ray diffraction. Structural analyses of 1 and 2 gave the following parameters: 1, triclinic, P-1, a = 7.732(4) Å, b = 14.285(8) Å, c = 17.802(9) Å, α = 101.314(8)°, β = 92.682(9)°, γ = 92.228(9)°, V = 1923.6(18) Å3, and Z = 4; 2, monoclinic, C2/c, a = 13.857(2) Å, b = 10.4213(18) Å, c = 9.436(2) Å, β = 97.099(2), V = 1352.1(4) Å3, and Z = 4. In complex 1, vanadium atom adopts a distorted tetragonal bipyramid structure, which is typical for oxovanadium(IV) complexes. Compound 2 is a dimer-dithio carboxyl compound with S–S bond. In addition, thermal analysis was performed for analyzing the stabilization of the complexes.  相似文献   

13.
The metastable phase (phase 1) Zn(OH)2(tp)2 (tp = C8H4O42?) was found to be an intermediate forming during the hydrothermal synthesis of Zn3(OH)4tp (phase 2). Its structure has been determined ab initio from synchrotron powder diffraction data and refined with the Rietveld method: space group P21/c, a = 3.48856(2) Å, b = 5.84645(2) Å, c = 22.1331(1) Å, β = 103.46(1)°, Dx = 2.488 g/cm3, Rp = 0.10, RB = 0.095 (402 independent reflections). The structures of the two analogues were compared. Whereas a mixed coordination of the zinc atoms was found in phase 2, phase 1 exhibits only penta-coordinated Zn(II). Moreover, different optical properties were observed, Zn2(OH)2(tp) showing photoluminescence at 378 nm under λex = 316 nm.  相似文献   

14.
《Solid State Sciences》2007,9(9):804-811
Hydrothermal combination of CuSO4, MoO3, and 4-phenylpyridine (4-phpyr) in a 1:4:4.5 ratio under basic conditions afforded purple crystals of {[Cu(4-phpyr)4]2(Mo8O26)·4-phpyr} (1), which were analyzed by spectroscopy and single crystal X-ray diffraction. The asymmetric octamolybdate clusters in 1 adopt an intermediate structural variant between the known α and δ isomeric forms, with four octahedral and three tetrahedral molybdenum coordination spheres, along with one molybdenum atom in a highly distorted square pyramidal environment. Paddle-wheel shaped [Cu(4-phpyr)4]2+ cations link adjacent {α/δ-Mo8O26}4− clusters into a 2-D layered rhomboid grid coordination polymer. Uncoordinated 4-phpyr molecules lie in incipient voids in the interlamellar regions. The structure of 1 illustrates the utility of sterically bulky coordination complexes in the stabilization of intermediate conformations during energetically facile polyoxometallate isomer interconversion. Crystallographic data: triclinic, P1, a = 13.717(3) Å, b = 13.728(3) Å, c = 14.809(3) Å, α = 109.251(4)°, β = 107.670(4)°, γ = 92.005(4)°, V = 2480.0(9) Å3, R1 = 0.0637, wR2 = 0.1054.  相似文献   

15.
《Polyhedron》2005,24(16-17):2215-2221
The reaction of MnX2 · 4H2O (X = Cl or Br) with 2,6-bis(hydroxymethyl)-4-methylphenol (H3L) and NaOH in methanol solution yielded two tetranuclear manganese complexes, [Mn4(HL)4(MeOH)4Cl2] (1) and [Mn4(HL)4(MeOH)4Br2] (2). Both compounds crystallize in the monoclinic space group C2/c with cell parameters: a = 26.0945(19) Å, b = 11.4999(8) Å, c = 21.2188(16) Å, β = 121.050(1)° and z = 4 for 1 · 2Et2O; a = 25.8145(3) Å, b = 11.6734(2) Å, c = 21.3956(3) Å, β = 120.1277(6)° and z = 4 for 2 · 2Et2O. Both complexes consist of a mixed-valence dicubane structure, which comprises two MnII and two MnIII ions. Magnetic susceptibilities and magnetization of complexes 1 and 2 in the solid state indicate that two clusters have an S = 9 ground state. Frequency-dependent out-of-phase signals of alternating current magnetic susceptibilities were observed in the low temperature range (<3 K) for both complexes indicating a slow magnetic relaxation.  相似文献   

16.
Rubidium strontium cyclo-triphosphate trihydrate, RbSrP3O9·3 H2O, was synthesized by reaction between cyclo-triphosphoric acid H3P3O9 and rubidium and strontium carbonates. It crystallizes in the othorhombic system, space group Pnma, with a = 9.120(1) Å, b = 8.141(1) Å, c = 15.234(1) Å, V = 1 131.1(3) Å3, Z = 4. Crystal structure determination from single crystal data collected at 300 K shows that the P3O9 groups exhibit Cs symmetry and are not connected to each other. Rubidium (distorted octahedron) and strontium (distorted square antiprism) are coordinated by oxygen and water molecules yielding the formation of infinite chains interconnected to each other and to the P3O9 groups. The IR valence vibration bands of the P3O9 cycle have been identified in the domain 1 400–650 cm–1 and related to the structural results. After water loss, the anhydrous phase crystallizes from an intermediate amorphous phase and further decomposes into Rb2SrP4O12 and SrP2O6.  相似文献   

17.
《Polyhedron》2007,26(9-11):2101-2104
The bimetallic ferromagnetic chain {[K(18-crown-6)][Mn(bpy)Cr(ox)3]} (1) has been synthesized and characterized. It crystallizes in the orthorhombic chiral space group P212121 [a = 9.0510(2) Å, b = 14.4710(3) Å, c = 26.8660(8) Å, V = 3510.97(1) Å3, Z = 2]. Compound 1 is made up by anionic [Mn(bpy)Cr(ox)3] 1D chains and cationic [K(18-crown-6)]+ complexes. The magnetic exchange within the chain is ferromagnetic [J = +7.8(7) cm−1]. In the solid state, the ferromagnetic chains are well isolated magnetically and no long range magnetic ordering has been observed above 2 K.  相似文献   

18.
The structures of tin(II)-oxalate, tin(IV)Na–EDTA and tin(IV)Na8-inositol hexaphosphate were investigated using XRD analysis. Samples were identified using the Mössbauer study, thermal analysis and FTIR spectrometry. The Mössbauer study determined two different oxidation states of tin atoms, and consequently two different tin surroundings in the end products. The tin oxalate was found to be orthorhombic with space group Pnma, a=9.2066(3) Å, b=9.7590(1) Å, c=13.1848(5) Å, V=1184.62 Å3 and Z=8. SnNa–EDTA was found to be monoclinic with space group P21/c1, a=10.7544(3) Å, b=10.1455(3) Å, c=16.5130(6) Å, β=98.59(2)°, V=1781.50(4) Å3 and Z=4. Sn(C6H6Na8O24P6) was found to be amorphous.  相似文献   

19.
《Solid State Sciences》2007,9(2):205-212
SrSi2O2N2 is an important host lattice for Eu2+ doped phosphors. Its crystal structure (space group P1, a = 7.0802(2) Å, b = 7.2306(2) Å, c = 7.2554(2) Å, α = 88.767(3)°, β = 84.733(2)°, γ = 75.905(2)° and V = 358.73(2) Å3, Z = 4) is isotypic with EuSi2O2N2: highly condensed silicate layers are separated by Sr2+. The samples are characterized by pronounced real structure effects owing to pseudosymmetry of partial structures. Polysynthetic twinning with domains of various sizes is ubiquitous and oriented intergrowth of domains with different orientations has also been observed and analysed in detail by means of electron diffraction and high-resolution electron microscopy. These effects also affect the X-ray powder pattern and were taken into account in a Rietveld refinement.  相似文献   

20.
The crystal structure of the synthetic iron phosphate Na0.10(1)Fe6.99(1)(P1.00(1)O4)6 has been refined at 270 and 100 K from single-crystal X-ray diffraction data. The compound is triclinic, P−1, Z=1, lattice parameters: a=6.3944(9) Å, b=7.956(1) Å, c=9.364(1) Å, α=105.13(1)°, β=108.35(1)°, γ=101.64(1)° at 270 K and adopts the well-known howardevansite structure type. Iron, being both in the divalent and the trivalent valence state, is ordered on the four symmetry non-equivalent iron positions [Fe2+ on Fe(1) and Fe(3), Fe3+ on Fe(2) and Fe(4)]. Three of the four iron positions show octahedral oxygen atom coordination, the fourth one, which is occupied by Fe2+, is five-fold coordinated. The structure consists of crankshafts (buckled chains) of edge sharing Fe-oxygen polyhedra, passing through the unit cell in [101] direction. Structural investigation at 100 K shows no change of symmetry. The valence state and distribution of iron was determined by 57Fe Mössbauer spectroscopy. The compound shows 4 subspectra in agreement with the four different Fe sites. The assignment of the Fe2+ doublets to the Fe(1) and Fe(3) sites is trivial due to the 2:1 stoichiometry, also found in the Mössbauer spectra. For the Fe3+ sites, the temperature-dependent variation of structural distortion parameters and the quadrupole splitting led to a clear doublet assignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号