首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new ternary Sn–Ni–P alloy rods array electrode for lithium-ion batteries is synthesized by electrodeposition with a Cu nanorods array structured foil as current collector. The Cu nanorods array foil is fabricated by heat treatment and electrochemical reduction of Cu(OH)2 nanorods film, which is grown directly on Cu substrate through an oxidation method. The Sn–Ni–P alloy rods array electrode is mainly composed of pure Sn, Ni3Sn4 and Ni–P phases. The electrochemical experimental results illustrate that the Sn–Ni–P alloy rods array electrode has high reversible capacity and excellent coulombic efficiency, with an initial discharge capacity and charge capacity of 785.0 mAh g?1 and 567.8 mAh g?1, respectively. After the 100th discharge–charge cycling, capacity retention is 94.2% with a value of 534.8 mAh g?1. The electrode also performs with an excellent rate capacity.  相似文献   

2.
A LiMnPO4/C composite cathode was prepared by a combination of spray pyrolysis and wet ball milling. The cathode showed stable performance at various cutoff voltages up to 4.9 V. The cutoff voltage increase up to 4.9 V allowed the achievement of a high discharge capacity in galvanostatic charge–discharge tests. The discharge capacities of 153 mAh g?1 at 0.05 C and 149 mAh g?1 at 0.1 C were achieved at room temperature; the trickle-mode discharge capacities at room temperature were 132, 120 and 91 mAh g?1 at 0.1, 1 and 5 C discharge rates, respectively. The cell exhibited a good rate capability in the galvanostatic cycling up to 5 C discharge rates at both ambient temperature and 50 °C.  相似文献   

3.
A B2O3-doped SnO2 thin film was prepared by a novel experimental procedure combining the electrodeposition and the hydrothermal treatment, and its structure and electrochemical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, energy dispersive X-ray (EDX) spectroscopy and galvanostatic charge–discharge tests. It was found that the as-prepared modified SnO2 film shows a porous network structure with large specific surface area and high crystallinity. The results of electrochemical tests showed that the modified SnO2 electrode presents the largest reversible capacity of 676 mAh g?1 at the fourth cycle, close to the theoretical capacity of SnO2 (790 mAh g?1); and it still delivers a reversible Li storage capacity of 524 mAh g?1 after 50 cycles. The reasons that the modified SnO2 film electrode shows excellent electrochemical properties were also discussed.  相似文献   

4.
Hierarchically ordered porous nickel oxide array film was prepared by electrodeposition through monolayer polystyrene spheres template. The as-prepared film had a highly porous structure of interconnected macrobowls array possessing nanopores. As anode material for lithium ion batteries, the porous array NiO film exhibited weaker polarization, higher coulombic efficiency and better cycling performance in comparison with the dense NiO film. After 50 cycles, the discharge capacity of porous array NiO film was 518 mAh g? 1 at 1 C rate, higher than that of the dense NiO film (287 mAh g? 1). The enhancement of the electrochemical properties was due to the unique hierarchical porous architecture, which provided fast ion/electron transfer and alleviated the structure degradation during the cycling process.  相似文献   

5.
InP thin film has been successfully fabricated by pulsed laser deposition (PLD) and was investigated for its electrochemistry with lithium for the first time. InP thin film presented a large reversible discharge capacity around 620 mAh g?1. The reversibility of the crystalline structure and electrochemical reaction of InP with lithium were revealed by using ex situ XRD and XPS measurements. The high reversible capacity and stable cycle of InP thin film electrode with low overpotential made it one of the promise energy storage materials for future rechargeable lithium batteries.  相似文献   

6.
Besides classical electrode materials pertaining to Li-ion batteries, recent interest has been devoted to pairs of active redox composites having a redox center and an intercalant source. Taking advantage of the NaPF6 salt decomposition above 4.2 V, we extrapolate this concept to the electrochemical in situ preparation of F-based MnO composite electrodes for Na-ion batteries. Such electrodes exhibit a reversible discharge capacity of 145 mAh g 1 at room temperature. The amorphization of pristine MnO electrode after activation is attributed to the electrochemical grinding effect caused by substantial atomic migration and lattice strain build-up upon cycling.  相似文献   

7.
Flexible, free-standing, paper-like, graphene-silicon composite materials have been synthesized by a simple, one-step, in-situ filtration method. The Si nanoparticles are highly encapsulated in a graphene nanosheet matrix. The electrochemical results show that graphene-Si composite film has much higher discharge capacity beyond 100 cycles (708 mAh g? 1) than that of the cell with pure graphene (304 mAh g? 1). The graphene functions as a flexible mechanical support for strain release, offering an efficient electrically conducting channel, while the nanosized silicon provides the high capacity.  相似文献   

8.
Porous Sn–Co–P alloy with reticular structure were prepared by electroplating using copper foam as current collector. The structure and electrochemical performance of the electroplated porous Sn–Co–P alloy electrodes were investigated in detail. Experimental results illustrated that the porous Sn–Co–P alloy consists of mainly SnP0.94 phase with a minor quantity of Sn and Co3Sn2. Galvanostatic charge–discharge tests of porous Sn–Co–P alloy electrodes confirmed its excellent performances: at 50th charge–discharge cycle, the discharge specific capacity is 503 mAh g?1 and the columbic efficiency is as high as 99%. It has revealed that the porous and multi-phase composite structure of the alloy can restrain the pulverization of electrode in charge/discharge cycles, and accommodate partly the volume expansion and phase transition, resulting in good cycleability of the electrode.  相似文献   

9.
An interwoven core–shell structured Ni/NiO anode for lithium ion batteries was created by a simple oxidation of Ni foam. As-prepared configuration has a high specific discharge capacity of 701 mAh g?1 at the 2nd cycle. Its electrochemical performance at subsequent cycles shows good energy capacity of 646 mAh g?1 at the 65th cycle as well as good rate capability. The porous core–shell structure not only buffers the volume change during cycling but also effectively increases the contact among anode, current collector and electrolyte. The small contact resistance between NiO and Ni facilitates enhanced intrinsic kinetics from conversion reaction.  相似文献   

10.
All-solid-state phosphate symmetric cells using Li3V2(PO4)3 for both the positive and negative electrodes with the phosphate Li1.5Al0.5Ge1.5(PO4)3 as the solid electrolyte were proposed. Amorphous Li1.5Al0.5Ge1.5(PO4)3 was added into the electrode to increase the interface area between the active materials and the electrolyte. Any other phases were not formed at the electrode/electrolyte interface even after hot pressing at 600 °C. The discharge capacity was 92 mAh g? 1 at 22 µA cm? 2 at 80 °C, and 38 mAh g? 1 at 25 °C, respectively. Symmetric cell configuration leads to simplify the fabrication process for all-solid-state batteries and will reduce manufacturing costs.  相似文献   

11.
We report on the self-supported, two-dimensional (2D) SnS nanosheets electrode directly grown on metallic current collectors via non-catalytic and template-free, vapor transport synthetic route. The self-supported SnS nanosheets electrode demonstrates good cycling performance and superior rate capabilities: a capacity of ~380 mAh g?1 even at 20C rate (after charging for 3 min), larger than the theoretical capacity of the carbon-based electrodes currently used in commercial Li ion batteries. The origin of such an improvement in the long-term cycle stability and electronic/ionic transport kinetics, is understood by means of various microscopic investigation as well as unique characteristics of self-supported nanostructuring strategy itself.  相似文献   

12.
All-solid-state thin film batteries based on sputtered pyrite electrodes, a lithium phosphorus oxynitride electrolyte and a lithium anode were prepared and characterized. The successive reduction of both S22  and Fe2 + species led to an impressive volumetric discharge capacity, five times higher than the one for LiCoO2. Excellent reversibility and capacity retention were obtained during the first and the subsequent 800 charge–discharge cycles. A continuous cycling in the low voltage domain was found to be detrimental to the reversibility of the conversion reaction, suggesting a progressive evolution of the phase distribution inside the electrode. The initial capacity was easily recovered after few full oxidation cycles.  相似文献   

13.
Nanostructured transition metal oxides are of great interest as a new generation of anode materials for high energy density lithium-ion batteries. In this work, research has been focused on the nano-sized (grain size ~7 nm) CoO anode material and this material delivers charge capacity of 900 mAh g?1 that exceeds the theoretical value of 715 mAh g?1. Possible reason for this unaccounted and unexplained anomalous capacity of the nano-sized CoO material has been suggested by thermogravimetric analysis. A mechanism for this interesting behavior has been systematically evaluated by using X-ray absorption spectroscopy. The anomalous capacity is proposed to be associated with the formation of oxygen-rich CoO material. The results obtained from the nano-sized CoO material have been compared with relatively larger-sized material (grain size ~32 nm).  相似文献   

14.
The three-dimensional porous Fe–Sb–P amorphous alloy electrodes were prepared by electroplating on porous copper current collector. The structure and electrochemical performance of the electroplated Fe–Sb–P amorphous alloy electrodes have been investigated in detail. XRD results showed that the as-deposited Fe–Sb–P alloy electrode exhibits an amorphous nature. Electrochemical tests indicated that at the 50th cycle, the Fe–Sb–P amorphous alloy electrodes can deliver a discharge capacity of 448 mAh g?1. The porous and amorphous structure of electrode of Fe–Sb–P alloy was beneficial in relaxing the volume expansion during cycling, which improved the cycle ability of Fe–Sb–P alloy electrode.  相似文献   

15.
Vertically aligned Indium oxide (In2O3) nanoblades are successfully obtained through plasma enhanced chemical vapor deposition (PECVD) approach. By using plasma, the reaction between InCl3 and O2 was able to take place, yielding vertically aligned blade like nanostructure. The novel In2O3 nanostructures exhibit improved electrochemical properties when used as anode materials for lithium-ion batteries. The In2O3 electrode reveals reversible capacity of 580 mAh g?1 after 100 cycles, much higher than that of the In2O3 thin films. The result suggests that proper structural modification of In2O3 thin film may contribute to the improvement of electrochemical properties. The In2O3 electrodes with large reversible capacity and stable cycling performance may provide new insight of anode materials applied in thin film lithium-ion batteries.  相似文献   

16.
The amorphous Mg–Al–Ni composites were prepared by mechanical ball-milling of Mg17Al12 with x wt.% Ni (x = 0, 50, 100, 150, 200). The effects of Ni addition and ball-milling parameters on the electrochemical hydrogen storage properties and microstructures of the prepared composites have been investigated systematically. For the Mg17Al12 ball-milled without Ni powder, its particle size decreases but the crystal structure does not change even the ball-milling time extending to 120 h, and its discharge capacity is less than 15 mAh g?1. The Ni addition is advantageous for the formation of Mg–Al–Ni amorphous structure and for the improvement of the electrochemical characteristics of the composites. With the Ni content x increasing, the composites exhibit higher degree of amorphorization. Moreover, the discharge capacity of the composite increases from 41.3 mAh g?1 (x = 50) to 658.2 mAh g?1 (x = 200) gradually, and the exchange current density I0 increases from 67.1 mA g?1 (x = 50) to 263.8 mA g?1 (x = 200), which is consistent with the variation of high-rate dischargeability (HRD). The ball-milled Mg17Al12 + 200 wt.% Ni composite has the highest cycling discharge capacity in the first 50 cycles.  相似文献   

17.
A VO2 · 0.43H2O powder with a flaky particle morphology was synthesized via a hydrothermal reduction method. It was characterized by scanning electron microscopy, electron energy loss spectroscopy, and thermogravimetric analysis. As an electrode material for rechargeable lithium batteries, it was used both as a cathode versus lithium anode and as an anode versus LiCoO2, LiFePO4 or LiNi0.5Mn1.5O4 cathode. The VO2 · 0.43H2O electrode exhibits an extraordinary superiority with high capacity (160 mAh g?1), high energy efficiency (95%), excellent cyclability (142.5 mAh g?1 after 500 cycles) and rate capability (100 mAh g?1 at 10 C-rate).  相似文献   

18.
LiFe1/3Mn1/3Co1/3PO4/C solid solution was prepared via a poly(ethylene glycol) assisted sol–gel method and exploited as cathode materials for lithium ion batteries. X-ray diffraction patterns indicate that LiFe1/3Mn1/3Co1/3PO4/C is crystallized in an orthorhombic structure. The scanning electron microscopy and transmission electron microscopy show that the particles are about 200 nm with a uniform carbon coating of about 8 nm in thickness to form a core–shell nanostructure. During charge–discharge cycles, LiFe1/3Mn1/3Co1/3PO4/C presented three plateaus corresponding to Fe3+/Fe2+, Mn3+/Mn2+ and Co3+/Co2+ redox couples, and a discharge capacity of 150.8 mAh g?1 in the first cycle, remaining 121.2 mAh g?1 after 30 cycles. Core–shell structure can optimize the performances of polyoxoanionic materials for lithium ion batteries.  相似文献   

19.
Carbon/Si composite nanofibers with porous structures are prepared by electrospinning and subsequent carbonization processes. It is found that these porous composite nanofibers can be used as anode materials for rechargeable lithium-ion batteries (LIBs) without adding any binding or conducting additive. The resultant anodes exhibit good electrochemical performance; for example, a large discharge capacity of 1100 mAh g?1 at a high current density of 200 mA g?1.  相似文献   

20.
The bismuth nanosheets grown on carbon fiber cloth were designed. For sodium-ion batteries, the Bi/CFC electrode exhibited a high reversible capacity of 350 and 240 mAh g 1 after 300 cycles at 50 and 200 mA g 1, as well as a good rate capability. Besides, the electrode displayed two flat potential profiles during the charge/discharge process. The results suggest that the Bi/CFC electrode has excellent potential as an anode for sodium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号