首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The electrochemiluminescent (ECL) behavior of lucigenin on a multi-wall carbon nanotube/nano-Au modified glassy carbon electrode (MWNT/nano-Au/GCE) was studied in this paper. Compared with the bare GCE, the ECL intensity of lucigenin can be greatly enhanced at MWNT/nano-Au/GCE. Based on the fact that superoxide dimutase (SOD) could obviously inhibit the ECL of lucigenin at MWNT/nano-Au/GCE, a sensitive ECL biosensor for determination of SOD was developed with a wide linear range of 5.0 × 10−8–5.0 × 10−6 mol/L with detection limit of 2.5 × 10−8 mol/L.  相似文献   

2.
A heated composite electrode consisted of multi-wall carbon nanotube (MWNT) and ionic liquids (ILs) was designed and fabricated. The non-conductive binders were replaced by a conductive IL, n-octylpyridinum hexafluorophosphate (OPFP). This heated OPFP/MWNT composite electrode was applied for electrochemiluminescent (ECL) sensor, and the performance of ECL sensor was evaluated by ascorbic acid (AA)/lucigenin ECL system. The new heated electrode combines the advantages of ILs/CNT and heated electrode, showing high thermal stability and conductivity, simple heating setups, improved reproducibility, renewable surface, simplicity of fabrication and enhanced sensitivity with detection limit (S/N = 3) of 0.01 μmol/L for AA.  相似文献   

3.
Silver nanoparticle coated multi-walled carbon nanotubes (Ag/MWCNT) were prepared and used to fabricate a modified electrode. The Ag/MWCNT composites were observed by a transmission electron microscope (TEM), and the electrochemical properties of the Ag/MWCNT composite modified glassy carbon electrode were characterized by electrochemical measurements. The results showed that these composites had a favorable catalytic ability for the reduction of trichloroacetic acid (TCAA). Square wave voltammetric (SWV) technique was applied to detect TCAA. Under optimum conditions, the voltammetric determination of TCAA was performed with a linear range of 5.0 × 10? 6–1.2 × 10? 4 mol L? 1 and a detection limit of 1.9 × 10? 6 mol L? 1 (S/N = 3).  相似文献   

4.
A novel electrogenerated chemiluminescence aptamer-based (ECL-AB) biosensor for the determination of a small molecule drug is designed employing cocaine-binding aptamer as molecular recognition element for cocaine as a model analyte and ruthenium complex served as an ECL label. A 5′-terminal cocaine-binding aptamer with the ECL label at 3′-terminal of the aptamer was utilized as an ECL probe. The ECL-AB biosensors were fabricated by immobilizing the ECL probe onto a gold electrode surface via thiol-Au interactions. An enhanced ECL signal is generated upon recognition of the target cocaine, attributed to a change in the conformation of the ECL probe from random coil-like configuration on the probe-modified film to three-way junction structure, in close proximity to the sensor interface. The integrated ECL intensity versus the concentration of cocaine was linear in the range from 5.0 × 10−9 to 3.0 × 10−7 M. The detection limit was 1.0 × 10−9 M. This work demonstrates that the combination of a highly binding aptamer to analyte with a highly sensitive ECL technique to design ECL-AB biosensor is a great promising approach for the determination of small molecule drugs.  相似文献   

5.
The electrochemical oxidation of β-nicotinamide adenine dinucleotide (NADH) is studied at a glassy carbon electrode (GCE) modified with bicontinuous gyroidal mesoporous carbon (BGMC). Due to the large surface area and remarkable electrocatalytic properties of BGMC, the BGMC/GCE exhibits potent electrocatalytic activity toward the electro-oxidation of NADH. A substantial decrease of 649 mV in the overpotential of NADH oxidation reaction is achieved compared with a bare GCE. The anodic peak currents increase steadily with the concentration of NADH in a broad range from 3.0 × 10?6 to 1.4 × 10?3 M with a low detection limit of 1.0 × 10?6 M under the optimal condition.  相似文献   

6.
Binding of copper to three peptide fragments of prion (Cu2+ binding sites: 60–91, 92–96 and 180–193 amino acid residues) was investigated by anodic stripping voltammetry to determine the stoichiometries of Cu2+-prion peptide interactions. The method relies on the synthesis of N-terminally acetylated/C-terminally amidated peptide fragments of prion by solid-phase synthesis and direct monitoring of the oxidation current of copper in the absence and presence of each prion fragment. Titration curves of Cu2+ with Ac-PHGGGWGQ-NH2, Ac-GGGTH-NH2 and Ac-VNITKQHTVTTTT-NH2 were obtained in concentrations ranging from 8.52 × 10?7 to 5.08 × 10?6, 3.95 × 10?7 to 1.94 × 10?6 and 7.82 × 10?8 to 4.51 × 10?7 M, respectively. The acquired data were used to calculate the stoichiometries (one peptide per Cu2+ ion for all the three studied systems) and apparent dissociation constants (Kd = 4.37 × 10?8–3.50 × 10?10 M) for the three complexes.  相似文献   

7.
The present work proposed a novel ECL protocol to probe the interactions between mimic enzymes and small biological molecules. Iron(II) phthalocyanine (FePc) and two imidazoles (imidazole and histidine) were chosen as model molecules of mimic enzyme and small biological molecules, respectively. The interactions between FePc and the imidazoles were probed by a sensitive luminol–O2 ECL system. Before complexing with the imidazoles, FePc can inhibit luminol–O2 ECL due to its electrocatalysis towards O2, however, after complexing with the imidazoles, FePc decreases the electrocatalysis, leading to the observation of an enhanced luminol–O2 ECL. Additionally, the proposed protocol enables detection limits of 1.0 × 10?8 mol L?1 and 1.0 × 10?7 mol L?1 to be achieved, respectively, for imidazole and histidine under the physiological pH condition (pH 7.4).  相似文献   

8.
Direct electrochemistry of hemoglobin (Hb) has been achieved by its direct immobilization on carbon ionic liquid electrode (CILE). CILE was immersed in a solution containing Hb and ionic liquid, octylpyridinium chloride ([OcPy][Cl]), to directly immobilize Hb on CILE. Cyclic voltammetry of modified electrode exhibited quasi-reversible peaks corresponding to Hb. The oxidation and reduction peak potentials of immobilized Hb in acetate buffer solution, pH 5.0 and at a scan rate of 0.1 V s−1 were obtained at about –150 mV and –290 mV, respectively. The average surface coverage of the electroactive Hb adsorbed on the electrode surface was calculated as 8.4 × 10−11 mol cm−2. Hb retained its bioactivity on modified electrode and showed excellent electrocatalytic activity towards oxygen, hydrogen peroxide and nitrite. Hydrogen peroxide can be determined in the range of 1.0 × 10−4–5.0 × 10−3 M.  相似文献   

9.
A thionine modified aligned carbon nanotubes (ACNTs) electrode was fabricated and was used to electrochemically determine nitrite. The thionine modified ACNTs electrode exhibited enhanced electrocatalytic behavior to the oxidation of nitrite. The electrochemical mechanism of the thionine/ACNTs electrode towards the oxidation of nitrite was discussed. The thionine modified ACNTs electrode exhibited fast response towards nitrite with a detection limit of 1.12 × 10−6 mol  L−1 and a linear range of 3 × 10−6 – 5 × 10−4 mol  L−1. The proposed method was successfully applied in the detection of nitrite in real samples.  相似文献   

10.
A new polymeric membrane electrode has been constructed for the determination of phenylpropanolamine hydrochloride. The electrode was prepared by solubilizing the phenylpropanolamine-phosphomolybdate ion associate into a polyvinyl chloride matrix plasticized by dibutylphthalate as a solvent mediator. The electrode showed near-Nernstian response over the concentration range of 1 × 10?5–1 × 10?2 M with low detection limit of 6.3 × 10?6 M. The electrode displays a good selectivity for phenylpropanolamine with respect to a number of common inorganic and organic species. The electrode was successfully applied to the potentiometric determination of phenylpropanolamine ion in its pure state and its pharmaceutical preparation in batch and flow injection conditions.  相似文献   

11.
The novel anodic electrochemiluminescence (ECL) behaviors of the CdSe nanoparticles coreacted with tertiary amine were observed. The ECL intensity peak located near +1.2 V, accompanied with a shoulder above +1.5 V. The ECL emission peak estimated at about 580 nm was almost identical with that of the photoluminescence (PL), indicating the passivation of the surfaces of the nanoparticles. The dependence of the ECL on system pH and the concentration of the coreactants were also discussed. The halide ions could quench ECL, with the effective order I? > Br? > Cl?. Based on these results the possible ECL processes were proposed.  相似文献   

12.
Square-wave adsorptive stripping voltammetry technique was used to determine rosiglitazone (ROS) on the hanging mercury dropping electrode (HMDE) surface, in Britton Robinson buffer, pH = 5. The voltammetric cathodic peak was observed at ?1520 mV vs. Ag/AgCl reference electrode. The voltammetric peak response was characterized with respect to pH, supporting electrolyte, accumulation potential, preconcentration time, scan rate, frequency, pulse amplitude, surface area of the working electrode and the convection rate. Under optimal conditions, the voltammetric current is proportional to the concentration of ROS over the concentration range of 5 × 10?8–8 × 10?7 mol l?1 (r = 0.9899) with a detection limit of 3.2 × 10?11 mol l?1 using 120 s accumulation time. The developed SW-AdSV procedure showed a good reproducibility, the relative standard deviation RSD% (n = 10) at a concentration level of 5 × 10?7 mol l?1 was 0.33%, whereas the accuracy was 101% ± 1.0. The proposed method was successfully applied to assay the drug in the human urine and plasma samples with mean recoveries of 90 ± 0.71% and 86 ± 1.0%, respectively.  相似文献   

13.
NADH oxidation catalysts are extremely important in the field of electrochemical biosensors and enzymatic biofuel cells. Based on the growing diazonium chemistry, we synthesized the diazonium salt of the well-known NADH mediator toluidine blue O. The electrochemical reduction of the diazonium moiety by cyclic voltammetry onto a screen-printed electrode leads to an electrocatalyst suitable for the oxidation of NADH. The amperometric response for its oxidation shows a maximal current of 1.2 μA ([NADH] = 100 μM). Based on electrochemical measurements, the surface coverage is found to be 3.78 × 10? 11 mol cm? 2 and the heterogeneous standard rate constant kh is 1.21 ± 0.16 s? 1. The sensitive layer for the oxidation of NADH is improved by electrografting the diazonium salt with a potentiostatic method. Both the surface coverage and the heterogeneous standard rate constant kh are improved and found to be 6.08 ± 0.63 × 10? 11 mol cm? 2 and ~ 5.02 s? 1, respectively. The amperometric response is also improved by an 8 fold factor, reaching 9.87 μA ([NADH] = 120 μM). These remarkably high values for screen-printed electrodes are comparable to glassy carbon electrodes making this method suitable for low-cost bioelectronical devices.  相似文献   

14.
The potentiometric response characteristics of zinc ion selective PVC-based membrane electrode employing 1,12,14-triaza-5,8-dioxo-3(4),9(10)-dibenzoyl-1,12,14-triene as an inophore was investigated. The proposed electrode exhibits a Nernstian behavior with a slope of 29.2 ± 0.4 mV per decade with a working concentration range of 1.3 × 10?7–1.0 × 10?1 mol L?1 and a detection limit of 1.0 × 10?8 mol L?1. The membrane having the composition as TDODBCPT:O-NPOE:PVC:OA; 7:57:30:6 wt.% exhibits the best results. It has a fast response time of 7 s and can be used for at least 100 days without any considerable divergence in potential. The proposed electrode show good discrimination of Zn2+ ion from diverse ions. The potential response remains constant over a pH range of 3.5–9.2. The electrode found well work under laboratory conditions. The proposed sensor directly used for determination of zinc ions in human hair sample, wastewater and an indicator electrode with EDTA titration.  相似文献   

15.
Gold nanoparticles/carbon nanotubes (Au-NPs/CNTs) composites were rapidly synthesized by microwave radiation, and firstly applied for the determination of trace mercury(II) by anodic stripping voltammetry (ASV). The structure and composition of the synthesized Au-NPs/CNTs nanocomposites were characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV–vis absorption spectroscopy and cyclic voltammetry. Au-NPs/CNTs nanocomposites modified glassy carbon electrode (Au-NPs/CNTs/GCE) exhibited excellent performance for Hg(II) analysis. A wide linear range (5 × 10−10–1.25 × 10−6 mol/L) and good repeatability (relative standard deviation of 1.84%) were obtained for Hg(II) detection. The limit of detection was found to be 3 × 10−10 mol/L (0.06 μg/L) at 2 min accumulation, while the World Health Organization’s guideline value of mercury for drinking water is 1 μg/L, suggesting the proposed method may have practical utility.  相似文献   

16.
The behavior of a modified carbon platinum electrode (Pt) for lead(II) determination by square wave voltammetry (SWV) was studied. The modified electrode is obtained by electrodeposition of hydroxyapatite (HAP) on the surface of a bare platinum electrode. The new electrode (HAP/Pt) revealed interesting electroanalytical detection of lead(II) based on the adsorption of this metal onto hydroxyapatite under open circuit conditions. After optimization of the experimental and voltammetric conditions, the best voltammetric responses-current intensity and voltammetric profile were obtained in 0.2 mol L?1 KNO3 with: 30 min accumulation time, 5 mV pulse amplitude and 1 mV s?1 scan rate. The observed detection (DL, 3σ) and quantification (DL, 10σ) limits in pure water were 2.01 × 10?8 and 6.7 × 10?7 mol L?1, respectively. The reproducibility of the proposed method was determined from five different measurements in a solution containing 2.2 × 10?6 mol L?1 lead(II) with a coefficients of variation of 2.08%.The electrochemical of hydroxyapatite at platinum surfaces was characterized, after calcinations 900 °C, by X-ray diffraction, infrared spectroscopy, chemical and electrochemical analysis.  相似文献   

17.
A novel procedure for trace methylmercury determinations by anodic stripping voltammetry at a gold film electrode is presented. Measurements were performed in a flow system. For selective determination of methylmercury, the Hg2+ ions were masked by complexation with DTPA. Hg-DTPA complex is not reduced at the gold film electrode at the potential of methylmercury reduction to the metallic state. The calibration graph was linear from 5 × 10−9 to 1 × 10−7 mol L−1 for an accumulation time 600 s. A detection limit (based on 3σ criterion) for methylmercury was 2.3 × 10−9 mol L−1. The validation of the proposed procedure was made by analyses of human hair certified reference material.  相似文献   

18.
In this study, new xanthine biosensors, XO/Au/PVF/Pt and XO/Pt/PVF/Pt, based on electroless deposition of gold(Au) and platinum(Pt) nanoparticles on polyvinylferrocene(PVF) coated Pt electrode for detection of xanthine were presented. The amperometric responses of the enzyme electrodes were measured at the constant potential, which was due to the electrooxidation of enzymatically produced H2O2. Compared with XO/PVF/Pt electrode, XO/Au/PVF/Pt and XO/Pt/PVF/Pt exhibited excellent electrocatalytic activity towards the oxidation of the analyte. Effect of Au and Pt nanoparticles was investigated by monitoring the response currents at the different deposition times and the different concentrations of KAuCl4 and PtBr2. Under the optimal conditions, the calibration curves of XO/Au/PVF/Pt and XO/Pt/PVF/Pt were obtained over the range of 2.5 × 10?3 to 0.56 mM and 2.0 × 10?3 to 0.66 mM, respectively. The detection limits were 7.5 × 10?4 mM for XO/Au/PVF/Pt and 6.0 × 10?4 mM for XO/Pt/PVF/Pt. The effects of interferents, the operational and the storage stabilities of the biosensors and the applicabilities of the proposed biosensors to the drug samples analysis were also evaluated.  相似文献   

19.
《Comptes Rendus Chimie》2015,18(4):438-448
A highly sensitive method was investigated for the simultaneous determination of acetaminophen (AC), dopamine (DA), and ascorbic acid (AA) using a PbS nanoparticles Schiff base-modified carbon paste electrode (PSNSB/CPE). Differential pulse voltammetry peak currents of AC, DA and AA increased linearly with their concentrations within the ranges of 3.30 × 10−8–1.58 × 10−4 M, 5.0 × 10−8–1.2 × 10−4 M and 2.50 × 10−6–1.05 × 10−3 M, respectively, and the detection limits for AC, DA and AA were 5.36 × 10−9, 2.45 × 10−9 and 1.86 × 10−8 M, respectively. The peak potentials recorded in a phosphate buffer solution (PBS) of pH 4.6 were 0.672, 0.390, and 0.168 V (vs Ag/AgCl) for AC, DA and AA, respectively. The modified electrode was used for the determination of AC, DA, and AA simultaneously in real and synthetic samples.  相似文献   

20.
The microstructures, irradiation-induced defects and changes of mechanical property of Chinese domestic A508-3 steels after proton irradiation were investigated by TEM, positron lifetime, slow positron beam Doppler broadening spectroscopy and hardness measurements. The defects were induced by 240 keV proton irradiation with fluences of 1.25×1017 ions cm?2 (0.26 dpa), 2.5×1017 ions cm?2 (0.5 dpa), and 5.0×1017 ions cm?2 (1.0 dpa). The TEM observation revealed that the as-received steel had typical bainitic–ferritic microstructures. It was also observed that Doppler broadening S-parameter and average lifetime increased with dose level owing to the formation of defects and voids induced by proton irradiation. The correlation between positron parameters and hardness was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号