首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
In general, the high electrical conductivity (EC) comes into conflict with the good flexibility and high strength of carbon nanotube (CNT)/polyaniline (PANI) composites. In other words, a high CNT content will bring about a high EC but lead to a low flexibility and strength due to the CNT‐constrained matrix deformation and CNT aggregation. In this work, a highly conductive, flexible and strong CNT/PANI composite film prepared via a facile solvent‐evaporation method is readily obtained by a cold stretching. The cold stretching is conducted at room temperature for the CNT/PANI film. It is observed that the cold stretching process leads to an unexpectedly enhanced EC. The as‐obtained EC of 231 S/cm is much higher than that (2 – 50 S/cm) of the previously reported CNT/PANI composite films. Meanwhile, the strength is obviously improved over that of the pure PANI film and the good flexibility is maintained to a high degree by the introduction of a proper CNT content. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1575–1585  相似文献   

2.
The fabrication process of highly porous SnO(2) thick film by reaction between tin ions and oxygen gas generated by an anodic applied potential on substrates in SnCl(2) aqueous solution is reported; moreover, we succeeded in forming porous SnO(2) micropatterns through site-selective deposition on a Pt-patterned F-doped SnO(2)(FTO) coated substrate .  相似文献   

3.
Polyaniline (PANI)/polysulfone (PSF) composite films are successfully prepared by phase separation and one-step in-situ polymerization. It is found that the head-on face (in contact with solution) of the films is green while the back face is white. The chemical component and the surface morphology of both surfaces of the films are characterized by FT-IR spectra and SEM, respectively. The effect of the polymerization temperature, time and concentration of the reactants on the electrical properties of the films are discussed in details. The thermo-oxidative degradation of the films is studied by thermogravimetric analysis (TGA). The results indicate that the thermal stability of the PANI/PSF films is higher than that of the pure PSF film. __________ Translated from Journal of Northwest Normal University (Natural Science), 2005, 39(11) (in Chinese)  相似文献   

4.
Polyaniline (PANI) in an emeraldine‐base form, synthesized by chemical oxidation polymerization, was doped with camphor sulfonic acid (CSA). The conducting complex (PANI–CSA) and a matrix, polyamide‐66, polyamide‐11, or polyamide‐1010, were dissolved in a mixed solvent, and the blend solution was dropped onto glass and dried for the preparation of PANI/polyamide composite films. The conductivity of the films ranged from 10?7 to 100 S/cm when the weight fraction of PANI–CSA in the matrices changed from 0.01 to 0.09, and the percolation threshold was about 2 wt %. The morphology of the composite films before and after etching was studied with scanning electron microscopy, and the thermal properties of the composite films were monitored with differential scanning calorimetry. The results indicated that the morphology of the blend systems was in a globular form. The addition of PANI–CSA to the films resulted in a decrease in the melting temperature of the composite films and also affected the crystallinity of the blend systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2531–2538, 2002  相似文献   

5.
In this paper, we reported the design and preparation of a double-layer antireflective (AR) coating, which possessed relatively high transmittance at 351, 527, and 1053?nm. The refractive indices and film thicknesses of the under layer and upper layer of the simulated AR coating were determined as 1.27, 95?nm and 1.18, 106?nm, respectively. The under layer of the double-layer coating dip-coated from a mixture of base-catalyzed and acid-catalyzed silica sols had a refractive index of 1.27. The upper layer fabricated by the deposition of methylated silica nanoparticles by simply adding methyltriethoxysilane into the base-catalyzed silica sols possessed a refractive index of 1.18. The hydrophobicity of coatings could be dramatically improved with the water contact angle increasing from 23.4° to 150.0°, and the refractive indices of the pure base-catalyzed silica coatings were easily decreased from 1.20 to 1.12 through the surface treatment of silica nanoparticles. Thus, we have successfully prepared a double-layer AR coating, which had a high transmittance of 99.8%, 96.1%, and 99.7% at 351, 527, and 1053?nm, respectively.  相似文献   

6.
Highly ordered polyester/graphite flake composite has been fabricated via orienting the graphite flakes within a polymer matrix. The randomly dispersed graphite flakes in a polyester prepolymer were induced twice along the electric field direction, followed by the cross‐linking of the prepolymer. Scanning electron microscopy (SEM), X‐ray diffraction (XRD) analysis showed that the graphite flakes in the resulting composites were aligned parallel to each other. This structure anisotropy of the composite appeared to be a significant electrical anisotropic property with five to six orders of magnitude. Analysis showed that field‐induced torque caused by the polarization of graphite flakes undergone at electric field was a main force inducing the orientation of the graphite flakes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Composite films were prepared by electrophoretic deposition of poly(ethylenimine) or poly(allylamine hydrochloride) combined with cathodic precipitation of zirconia. Films of up to several micrometers thick were obtained on Ni, Pt, stainless-steel, graphite, and carbon-felt substrates. When the concentration of polyelectrolytes in solutions and the deposition time were varied, the amount of the deposited material and its composition can be varied. The electrochemical intercalation of yttria-stabilized zirconia particles into the composite films has been demonstrated. Obtained results pave the way for the electrodeposition of other polymer-ceramic composites. The deposits were studied by thermogravimetric analysis, X-ray diffraction analysis, scanning electron microscopy, and atomic force microscopy. The mechanisms of deposition are discussed.  相似文献   

8.
Composite films of titanium phosphate (TiPS)/Prussian blue (PB) were fabricated by the alternative deposition of TiPS layer and PB nanocrystals. The layer of TiPS was fabricated by adsorption of hydrated titanium from aqueous Ti(SO4)2 solution and subsequent reaction with phosphate groups. The layer of PB nanocrystals was fabricated by sequential adsorption of FeCl3 solution and K4[Fe(CN)6] solution. Regular deposition of TiPS/PB composite films were verified by UV-vis absorption spectroscopy and quartz crystal microbalance measurements. The successful fabrication of the TiPS/PB composite films was further confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. Instead of producing films of TiPS layers alternating with PB nanocrystal layers, the TiPS/PB composite films have a structure in which the interstices of the PB nanocrystal films are filled with TiPS component. TiPS/PB composite films show enhanced electrochemical properties and improved stability in comparison with pure PB films prepared by the multiple sequential adsorption process. TiPS/PB composite films have the capability to catalyze the electrochemical reduction of H2O2 and can be used as a biosensor for detecting H2O2.  相似文献   

9.
为改进以醇盐为原料溶胶-凝胶制备LaNiO3(LNO)薄膜工艺中存在的诸多苛刻因素,本文以无机盐为原料,利用湿化学工艺在硅衬底上制备了LNO薄膜,La(NO3)3·6H2O和Ni(NO3)2·6H2O冰醋酸溶液通过配体交换形成金属醋酸盐的冰醋酸溶液,回流时用乙酸酐(CH3CO)2O除硝酸根和结晶水,而乙酰丙酮(AcAc...  相似文献   

10.
Controlling the extent of orientation is of great interest in polymer processing and is effected by the choice of polymer, the fabrication technique and the processing conditions. Understanding the crystalline transitions that form highly oriented fibrils is necessary for modeling the changes in physical properties, relative to degree of orientation. A model is proposed to describe the mechanical properties of drawn semicrystalline polymer films based on structural transitions. With a minimal amount of experimental data (requiring testing on only two drawn films samples), this model can be used to predict film properties. These properties include the critical and maximum draw ratios, the moduli at the maximum draw ratio, the moduli of the fiber, the modulus of the nonfibrous gel relative to draw ratio, the volume fraction of fibers, and the rate of fibrillation. Where high degrees of uniaxial orientation are required, the polymer is typically drawn in the solid state, meaning the polymer is stretched in a single direction at temperatures below the melting point. During this process, pre‐existing crystallites are transformed into fiber‐like structures with large aspect ratios. The presence of these rigid asymmetric structures significantly enhances the moduli and break strength of the polymer. This work presents a model that describes the formation of fiber‐like structures. The volume fraction of fibers is predicted to be linear in draw ratio. The derived relationship between volume fraction of fibers and draw ratio can then be used for the prediction of the various properties of the oriented film. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 607–618, 2008  相似文献   

11.
Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without using conventional oxidants. Scanning electron microscopic images show the formation of PANI nanofibers attached to GO sheets. X‐ray diffraction (XRD) patterns indicate the presence of highly crystalline PANI. The sharp peaks in XRD pattern suggest GO sheets not only play an important role in the polymerization of aniline but also in inducing highly crystalline phase of PANI in the final composite. Electrical conductivity of doped GO–PANI composite is 582.73 S m?1, compared with 20.3 S m?1 for GO–PANI obtained by ammonium persulfate assisted polymerization. The higher conductivity appears to be the result of higher crystallinity and/or chemical grafting of PANI to GO, which creates common conjugated paths between GO and PANI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1545–1554  相似文献   

12.
Poly(3,4‐ethylenedioxythiophene)s (PEDOT) represent a class of conjugated polymers that can be potentially used as an electrode material for flexible organic electronics due to their superior conductivity and transparency. In this study, we demonstrate that the conductivity of a PEDOT containing copolymer film can be further enhanced by the oxidative chemical in situ copolymerization of a liquid film spun coated from monomer mixture (3,4‐ethylenedioxythiophene (EDOT) and 3‐thienyl ethoxybutanesulfonate (TEBS)), oxidant (iron(III) p‐toluenesulfonate (Fe(OTs)3)), weak base (imidazole), and solvent (methanol). We investigated that the effect of the processing parameters such as the molar ratios TEBS/EDOT, IM/EDOT, and Fe(OTs)3/EDOT on the surface morphology, optical property, and the conductivity of the resulting copolymer films. These parameters have been optimized to achieve conductivities for the copolymer films as high as 170 S/cm compared with a conductivity of 30 S/cm for the pure PEDOT film synthesized using the same fabrication method. This conductivity enhancement for the copolymer films was found to be resulted from the fact that the addition of TEBS monomer reduces the copolymerization rate, leading to the formation of much more uniform film surface without defects and copolymers of higher molecular weight which increase the conductivity of the resulting copolymer film. The composition of two monomers in the copolymer film is not related to the variation of conductivity. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1662–1673, 2008  相似文献   

13.
Facile synthesis of highly conductive polyaniline/graphite nanocomposites   总被引:1,自引:0,他引:1  
A facile process for the synthesis of exfoliated graphite and polyaniline/graphite (PANI/graphite) nanocomposite was developed. Graphite nanosheets were prepared via the microwave irradiation and sonication from synthesized expandable graphite. The nanocomposites were fabricated via in situ polymerization of aniline monomer in the presence of graphite nanosheets. The nanoscale dispersion of graphite sheets was evidenced by the SEM and TEM examinations. According to the electrical conductivity test, the conductivity of the final PANI/graphite nanocomposites were dramatically increased compared with pristine PANI. From the thermogravimetric analysis, the introduction of graphite exhibits a beneficial effect on the thermal stability of PANI.  相似文献   

14.
以可膨化石墨为原料,高温处理得到膨化石墨,再经过超声处理,得到纳米薄片石墨。将得到的纳米薄片石墨与甲基丙烯酸甲酯单体在超声作用下预聚,灌模,得到块状的聚甲基丙烯酸甲酯(PMMA)/石墨复合材料。用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、选区电子衍射SAD、红外、热重等分析仪器表征了纳米石墨薄片及PMMA/石墨复合材料。测试了复合材料的力学、电学性能,发现在室温下该复合材料的渗滤阀值为1.3%(wt),且保证石墨含量在1.4%(wt)时,即可保证复合材料具有良好的电学和力学性能。  相似文献   

15.
聚苯胺/顺丁橡胶复合导电膜的制备与性能   总被引:1,自引:4,他引:1  
采用溶液共混与浇铸法制备聚苯胺(PAn )/顺丁橡胶(BR)复合导电膜,确定了本征态聚苯胺以顺丁橡胶为弹性基体材料,甲苯为溶剂,过氧化二苯甲酰为交联剂,十二烷基苯磺酸作为共混分散剂和聚苯胺掺杂剂的复合膜制备工艺,并对复合膜的导电性能和形态结构进行了测试与表征.  相似文献   

16.
Highly refractive, heat-resistant BaTiO3 nanocomposite films were fabricated via in situ polymerization to homogeneously disperse barium titanate (BT) nanoparticles into polyimide (PI) matrix. BT nanoparticles surface-modified with O-phosphorylethanol phthalimide (PPHI) were employed to the in situ polymerization in which condensation reactions of a diphthalic anhydride and a diamine were conducted to form the prepolymer of poly(amic acid) (PAA) that was thermally imidized in the following step. The nanoparticles surface-modified were added to PAA solution at different times in the polymerization to examine the effect of PAA molecular weight on the refractive index (RI) of the nanocomposite films, which indicated that relatively low molecular weights (<10,000) of PAA formed at the point of nanoparticle addition was appropriate for enhancement of nanocomposite RI. An additional treatment of chemical imidization using acetic acid anhydride and pyridine, which was followed by the thermal imidization, was performed to examine the effect of polyimide structure on RI of nanocomposite films. The RI of nanocomposite films with excellent thermal stability could be successfully enhanced to n = 1.88 by the chemical imidization.  相似文献   

17.
Nonmodified multiwalled carbon nanotubes (MWCNTs)/sulfonated polyoxadiazole (sPOD) nanocomposites are successfully prepared by a facile solution route. The pristine MWCNTs are dispersed in a sPOD solution, and the mixtures are fabricated into thin films by solution casting. The homogeneous dispersion of nanotubes in the composites is confirmed by transmission electron microscopy. The mechanical properties, thermal stability, and electrical conductivity are investigated. Tensile strength, elongation at break, and tensile energy to break are shown to increase by more than 28, 45, and 73%, respectively, by incorporating up to 1.0 wt % pristine MWCNTs. The experimental values for sPOD/MWCNTs composite stiffness are compared with Halpin‐Tsai and modified Halpin‐Tsai predictions. The storage modulus is found to increase up to 10% at low CNT loading. The composite films, which have an outstanding thermal stability, show an increase of up to 57 °C in the initial degradation temperature. The addition of 1.0 wt % MWCNTs increases the electrical conductivity of the sPOD matrix by two orders of magnitude. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
Porous Si-Al films were fabricated by magnetron sputtering (co-sputtering) using three different copper substrates as current collectors, respectively. The morphology, compositions, structure, and crystallinity of the porous Si-Al films anodes were examined by using SEM, EDX, TEM, XRD, and Raman spectroscopy. The electrochemical properties of the porous Si-Al films anodes were evaluated by galvanostatic cycling. The Si-Al film deposited on copper foam showed higher insertion/extraction capacity, capacity retention, and longer cycle life in comparison to the Si-Al films deposited on expanded copper mesh and even copper mesh grid, which could be attributed to its unique three-dimensional macroporous structure. The three-dimensional macroporous structure could offer larger materials/electrolyte contact area, a much better adhesion, lower electrical resistance (i.e., well conductive), and stress-alleviated environment to partly accommodate volume expansion that leads to exfoliation during cycling.  相似文献   

19.
Proton conductive membranes were prepared as thin films of about 10 μm thickness by an ion beam assisted plasma polymerization process. Argon ions were generated in a high frequency plasma and accelerated towards a PTFE target where CF fragments were released as a consequence of the ion impact. Various sulfur components (SO2, CF3SO3H or ClSO3H) were added to achieve proton conductivity by the formation of sulfonic acid groups. The CF fragments combined with the sulfur components to form a coherent thin film on a substrate. Mass spectrometric investigations revealed, however, that sulfur oxygen compounds were extremely delicate towards reduction to sulfur carbon compounds like CS2 or SCF2. The best membrane conductivities (>10−4 S/cm) and highest ion exchange capacities (0.15 mmol/g) were achieved with chlorosulfonic acid involved in the plasma polymerization process. Ultra-thin layers of these of these plasma polymers (ca. 300 nm) were subsequently deposited onto Nafion® membranes in order to suppress methanol permeation for a potential application in a direct methanol fuel cell (DMFC). The ratio of proton conductivity and methanol diffusion coefficient was employed for an assessment of the transport characteristics of the coated membrane. Diffusion coefficients were determined in a flow cell coupled to a mass spectrometer. The plasma polymer coating decreased both the methanol permeation and the proton conductivity. With a proton conductive plasma polymer coating the decrease of methanol diffusion could outweigh the loss of proton conductivity. Plasma coating offers a way to suppress methanol crossover in DMFCs and to maintaining the proton conductivity.  相似文献   

20.
Stretchable conductive hydrogels have received significant attention due to their possibility of being utilized in wearable electronics and healthcare devices. In this work, a semi-interpenetrating polymer network (SIPN) strategy was employed to fabricate a set of flexible, stretchable and conductive composite hydrogels composed of polyvinyl alcohol (PVA) in the presence of glutaraldehyde as the crosslinker, HCl as the catalyst and poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) as the conductive medium. The results from FTIR, Raman, SEM and TGA indicate that a chemical crosslinking network and interactions of PVA and PEDOT:PSS exist in the SIPN hydrogels. The swelling ratio of hydrogels decreased with increasing content of PEDOT:PSS. Due to the chemical crosslinking network and interactions of PVA and PEDOT:PSS, PVA networks semi-interpenetrated with PEDOT:PSS exhibited excellent tensile and compression properties. The tensile strength and elongation at breakage of the composite hydrogels with 0.14 wt% PEDOT:PSS were 70 KPa and 239%, respectively. The compression stress of the composite hydrogels with 0.14 wt% PEDOT:PSS at a strain of 50% was about 216 KPa. The electrical conductivity of the hydrogels increased with increasing PEDOT:PSS content. The flexible, stretchable and conductive properties endow the composite hydrogel sensor with a superior gauge factor of up to 4.4 (strain: 100%). Coupling the strain sensing capability to the flexibility, good mechanical properties and high electrical conductivity, we consider that the designed PVA/PEDOT:PSS composite hydrogels have promising applications in wearable devices, such as flexible electronic skin and sensitive strain sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号