首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Solid State Sciences》2012,14(2):276-280
In this paper, graphene–cuprous oxide (G–Cu2O) composites were synthesized at room temperature using graphene oxide (GO) as two-dimensional support. From Zeta potential analysis, the surface charge of G–Cu2O composites altered from positive to negative, which favors the adsorption and photodegradation of positively charged dyes. Compared with Cu2O under similar synthesis condition, the G–Cu2O composites demonstrated improved photodegradation activity for methylene blue (MB) dye under visible light. Controlled experiments indicated that the G–Cu2O composite synthesized with 80 mg GO in the reaction system possessed more negative Zeta potential, highest specific surface area and thus presented the highest photocatalytic activity. Electrons mechanism for the improved photocatalytic performance of G–Cu2O composite was proposed in the degradation of MB.  相似文献   

2.
《Comptes Rendus Chimie》2015,18(3):358-367
Fe/SBA-15 catalysts containing iron oxide nanoparticles confined inside silica pores (replicated, internal, poorly crystalline) and grown outside silica grains (external, mainly crystalline hematite) in different proportions are prepared using a single silica support. Fe-species are deposited by the two-solvent technique with two iron salts precursors (Fe(NO3)3·9H2O, FeCl3·6H2O) and two solvents (cyclohexane, hexane) for 11 wt% of iron. Calcination is performed in reproducible conditions (700 °C, 2 °C/min, thin bed, in air). SAXS measurements are used to show that the 2D hexagonal structure of the used silica is maintained after Fe-loading and calcination. Ar sorption measurements show that the pores are partially plugged. The oxidation of pure methanol is used as a test reaction to compare photocatalytic properties. H2O2 and visible light both activate the reaction. More active catalysts are formed with hexane associated with FeCl3·6H2O than with Fe(NO3)3·9H2O. A reversed situation is observed with cyclohexane. Iron leaching (after 1 h 30 of test, up to 3 mg of Fe by mL) is important. These results are expected to be of interest in the exploration of size and shape “nanocatalysis” and to provide a further understanding for the reactions that take place when porous silicas are used as supports.  相似文献   

3.
Using porous cuprous oxide (Cu2O) microcubes, a simple non-enzymatic amperometric sensor for the detection of H2O2 and glucose has been fabricated. Cyclic voltammetry (CV) revealed that porous Cu2O microcubes exhibited a direct electrocatalytic activity for the reduction of H2O2 in phosphate buffer solution and the oxidation of glucose in an alkaline medium. The non-enzymatic amperometric sensor used in the detection of H2O2 with detection limit of 1.5 × 10?6 M over wide linear detection ranges up to 1.5 mM and with a high sensitivity of 50.6 μA/mM. This non-enzymatic voltammetric sensor was further utilized in detection of glucose with a detection limit of 8.0 × 10?7 M, a linear detection range up to 500 μM and with a sensitivity of ?70.8 μA/mM.  相似文献   

4.
Using dibenzo-24-crown-8-ether (DB24C8) as phase transfer catalyst, the monodispersed iron–platinum (FePt) alloy nanoparticles with size of ∼17 nm were synthesized by reduction of H2PtCl6·6H2O and FeCl2·4H2O in the solvothermal system. The structure, magnetic property and electrocatalytic activity of FePt nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction system (XRD), vibration sample magnetometer (VSM) and CHI 820 electrochemical analyser (three electrodes system, the reference electrode is saturated calomel electrode (SCE), the counter electrode is platinum electrode and the glassy carbon electrode is used as working electrode (GCE)), respectively. The results show that the as-synthesized FePt nanoparticles have a chemically disordered fcc structure and can be transformed into chemically ordered fct structure after annealing treatment above 400 °C, simultaneously accompanying with the coercivity changed from 5 to 2400 Oe. CVs of 0.5 M H2SO4/0.5 M CH3OH on GCE modified with FePt nanoparticles monolayer illustrate that the as-synthesized FePt nanoparticles have strong electrocatalytic activity toward the oxidation of CH3OH in aqueous solution.  相似文献   

5.
Ag and Au nanoparticles were found to significantly enhance the photocatalytic activity of self-organized TiO2 nanotubular structures. The catalyst systems are demonstrated to be highly efficient for the UV-light induced photocatalytic decomposition of a model organic pollutant – Acid Orange 7. The metallic nanoparticles with a diameter of ∼10 ± 2 nm (Ag) and ∼28 ± 3 nm (Au) were attached to a nanotubular TiO2 layer that consists of individual tubes of ∼100 nm of diameter, ∼2 μm in length and approx. 15 nm of wall thickness. Both metal particle catalyst systems enhance the photocatalytic decomposition significantly more on the nanotubes support than placed on a compact TiO2 surface.  相似文献   

6.
Core-shell Cu2O/Cu composites were successfully prepared by over-reduction of aqueous CuSO4 with hydrazine hydrate as reductant. Field emission scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) clearly illuminate that the core is Cu2O with 400 nm in diameter, and the shell is Cu with about 50 nm in thickness. The core-shell Cu2O/Cu exhibited weaker polarization and higher coulombic efficiency than pure octahedral Cu2O, especially in the initial stage of cycles. After 50 cycles, the reversible capacity of Cu2O/Cu (360 mAh g?1) was much higher than that of pure Cu2O (160 mAh g?1). The improvement of electrochemical properties is attributed to the core-shell structure of Cu2O/Cu and the catalytic effect of Cu on the decomposition of Li2O during the charging process.  相似文献   

7.
The reaction of Cu(ClO4)2·6H2O with dimethylglyoxime (H2dmg) in a 1:1 mole ratio in aqueous methanol at room temperature affords the dinuclear complex [Cu2(μ-Hdmg)4] (1). Reaction of 1 with [Cu(bpy)(H2O)2](ClO4)2 (bpy = 2,2′-bipyridine) in a 1:1 mole ratio in aqueous methanol at room temperature yields the tetranuclear complex [Cu4(μ-Hdmg)2(μ-dmg)2(bpy)2(H2O)2](ClO4)2 (2). The direct reaction of Cu(ClO4)2·6H2O with H2dmg and bpy in a 2:2:1 mole ratio in aqueous methanol at room temperature also yields 2 quantitatively. The complexes 1 and 2 were structurally characterized by X-ray crystallography. Unlike the binding in Ni/Co-dmg, two different types of N?O bridging modes during the oxime based metallacycle formation and stacking of square planar units have been identified in these complexes. The neutral dinuclear complex 1 has CuN4O coordination spheres and complex 2 consists of a dicationic [Cu4(μ-Hdmg)2(μ-dmg)2(bpy)2(H2O)2]2+ unit and two uncoordinated ClO4? anions having CuN4O and CuN2O3 coordination spheres. The two copper(II) ions are at a distance of 3.846(8) Å in 1 for the trans out of plane link and at 3.419(10) and 3.684(10) Å in 2 for the trans out of plane and cis in plane arrangements, respectively. The average Cu–Noxime distances are 1.953 and 1.935 Å, respectively. The average basal and apical Cu?Ooxime distances are 1.945, 2.295 and 2.429 Å. The UV–Vis spectra of 2 is similar to the spectrum of the reaction mixture of 1 and [Cu(bpy)(H2O)2]2+. Variable temperature magnetic properties measurement shows that the interaction between the paramagnetic copper centers in complex 1 is antiferromagnetic in nature. The EPR spectra of frozen solution of the complexes at 77 K consist of axially symmetric fine-structure transitions (ΔMS = 1) and half-field signals (ΔMS = 2) at ca. 1600 G, suggesting the presence of appreciable Cu–Cu interactions.  相似文献   

8.
Conducting polymer composite films comprised of polypyrrole (PPy) and multiwalled carbon nanotubes (MWCNTs) [PPy–CNT] were synthesized by in situ polymerization of pyrrole on carbon nanotubes in 0.1 M HCl containing (NH4)S2O8 as oxidizing agent over a temperature range of 0–5 °C. Pt nanoparticles are deposited on PPy–CNT composite films by chemical reduction of H2PtCl6 using HCHO as reducing agent at pH = 11 [Pt/PPy–CNT]. The presence of MWCNTs leads to higher activity, which might be due to the increase of electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces allowing higher dispersion and utilization of the deposited Pt nanoparticles. A comparative investigation was carried out using Pt–Ru nanoparticles decorated PPy–CNT composites. Cyclic voltammetry demonstrated that the synthesized Pt–Ru/PPy–CNT catalysts exhibited higher catalytic activity for methanol oxidation than Pt/PPy–CNT catalyst. Such kinds of Pt and Pt–Ru particles deposited on PPy–CNT composite polymer films exhibit excellent catalytic activity and stability towards methanol oxidation, which indicates that the composite films is more promising support material for fuel cell applications.  相似文献   

9.
A systematic investigation of the reactions of Cu(ClO4)2 · 6H2O with maleamic acid (H2L) in the presence of 2,2′-bipyridine (bpy) has been carried out. The chemical and structural identity of the products depends on the solvent, the absence or presence of external hydroxides in the reaction mixture and the molar ratio of the reactants. Various reaction schemes have led to the isolation of the complexes [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 (1), [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 · 2H2O (1 · 2H2O), [Cu(L′′)(bpy)]n · 2nH2O (2 · 2nH2O), [Cu2(L′′)(bpy)2(H2O)2]n(ClO4)2n · 0.5nH2O (3 · 0.5nH2O), [Cu2(L′′)2(bpy)2] · 2MeOH (5 · 2MeOH), [Cu2(L′)2(bpy)2(ClO4)2] (6) and [Cu(ClO4)2(bpy)(MeCN)2] (7b), where L′′2? and L′? are the maleate(?2) and monomethyl maleate(?1) ligands, respectively. The HL? ion has been transformed to L′′2? and L′? in the known compounds 2 · 2nH2O and 6, respectively, via metal ion-assisted processes involving hydrolysis (2 · 2nH2O) and methanolysis (6) of the primary amide group. The reaction that leads to 6 takes place through the formation of the mononuclear complex [Cu(ClO4)2(bpy)(MeOH)2] (7a), whose structure was assigned on the basis of its spectral similarity with the structurally characterized complex 7b. The structures of the cations in 1 and 1 · 2H2O consists of two CuII atoms bridged by the carboxylate groups of the two HL? ligands, each exhibiting the less common η2 coordination mode; a chelating bpy molecule and a H2O ligand complete square pyramidal coordination at each metal centre. The structure of the dinuclear repeating unit in the 1D coordination polymer 3 · 0.5nH2O consists of two CuII atoms bridged by two syn,syn η1:η1:μ2 carboxylate groups belonging to two L′′2? ions; each ligand bridged two neighboring [CuII,II2] units thus promoting the formation of a helical chain. The structure of the dinuclear molecule of complex 5 · 2MeOH consists of two CuII atoms bridged by two η2 carboxylate groups from two L′′2? ligands; the second carboxylate group of each maleate(?2) ligand is monodentately coordinated to CuII, creating a remarkable seven-membered chelating ring. The L′? ion behaves as a carboxylate-type ligand in 6, with the carboxylate group being in the familiar syn,syn η1:η1:μ2 coordination mode; a chelating bpy molecule and a coordinated ClO4? complete five-coordination at each CuII centre. The crystal structures of the complexes are stabilized by various H-bonding patterns. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

10.
Herein, we report visible light active mesoporous cadmium bismuth niobate(CBN) nanospheres as a photocatalyst for hydrogen(H_2) generation from copious hydrogen sulfide(H_2S). CBN has been synthesized by solid state reaction(SSR) and also using combustion method(CM) at relatively lower temperatures.The as-synthesized materials were characterized using different techniques. X-ray diffraction analysis shows the formation of single phase orthorhombic CBN. Field emission scanning electron microscopy and high resolution-transmission electron microscopy showed the particle size in the range of ~0.5–1 μm for CBN obtained by SSR and 50–70 nm size nanospheres using CM, respectively. Interestingly, nanospheres of size 50–70 nm self assembled with 5–7 nm nanoparticles were observed in case of CBN prepared by CM.The optical properties were studied using UV–visible diffuse reflectance spectroscopy and showed band gap around ~3.0 eV for SSR and 3.1 eV for CM. The slight shift in band gap of CM is due to nanocrystalline nature of material. Considering the band gap in visible region, the photocatalytic activity of CBN for hydrogen production from H_2S has been performed under visible light. CBN prepared by CM has shown utmost hydrogen evolution i.e. 6912 μmol/h/0.5 g which is much higher than CBN prepared using SSR.The enhanced photocatalytic property can be attributed to the smaller particle size, crystalline nature,high surface area and mesoporous structure of CBN prepared by combustion method. The catalyst was found to be stable, active and can be utilized for water splitting.  相似文献   

11.
Cuprous oxide (Cu2O) nanoparticles and microparticles have been prepared by liquid phase chemical synthesis. The samples were characterized by means of SEM, XRD, UV/DRS and XPS. It was presented that as-prepared Cu2O nanoparticles are substantially stable in ambient atmosphere and the Cu+ as main state exists on the surface of Cu2O nanoparticles. As-prepared Cu2O microparticles can exist stably as a Cu2O/CuO core/shell structure; and the Cu2+ as main state exists on the surface of Cu2O microparticles. The behaviors of adsorption, photocatalysis and photocorrosion of Cu2O particles with different sizes were investigated in detail. The results show that Cu2O nanoparticles are very easy to photocorrosion during the photocatalytic reaction, which cannot be used as photocatalyst directly to degrade organic compound, although as-prepared Cu2O nanoparticles exhibit special property of adsorption. Cu2O microparticles have a higher photocatalytic activity than Cu2O nanoparticles because of its slower photocorrosion rate, although Cu2O microparticles have much lower adsorption capacity than Cu2O nanoparticles. The mechanisms of photocatalysis and photocorrosion for Cu2O under visible light were also discussed.  相似文献   

12.
Hydrous vanadium oxide (denoted as VOx·yH2O) deposited at 0.4 V shows promising capacitive behavior in aqueous media containing concentrated Li ions. VOx·yH2O annealed in air at 300 °C for 1 h shows highly reversible Li-ion intercalation/de-intercalation behavior with specific capacitance reaching ca. 737 and 606 F g? 1 at 25 and 500 mV s? 1 in 12 M LiCl between ?0.2 and 0.8 V. In 14 M LiCl, retention of specific capacitance is about 95% when the scan rate is increased from 25 to 500 mV s? 1. This work is the first report showing the ultrahigh rate of Li-ion intercalation/de-intercalation in VOx·yH2O. A so-called Li-ion supercapacitor of the asymmetric type consisting of a VOx.yH2O cathode and a WO3.zH2O anode is proposed here.  相似文献   

13.
The newly prepared homo-bimetallic complexes [M2(imda)2(H2O)4], [M2(imda)2(Bipy)2] (M = Co, Ni or Cu) and [Fe2(imda)2(H2O)3Cl] (H2imda = iminodiacetic acid and Bipy = 2,2′-bipyridine) have been studied employing IR, FAB-mass, 1H and 13C NMR, EPR and ligand field spectra, which indicated a high-spin state of metal ion with hexa-coordinate environment. 57Fe Mössbauer data of the homo-bimetallic complex [Fe2(imda)2(H2O)3Cl] confirm a high-spin configuration with Fe (±3/2  1/2) nuclear transitions and the presence of Kramer's double degeneracy. At RT, the spin–spin interactions of the neighbouring nuclei (Fe3+–Fe3+ = S5/2–S5/2) are anti-ferromagnetically coupled. However, at LNT, the complex acquires a mixed-valent [FeIII–FeII] composition corroborated from the X-band EPR data. CV studies indicated the presence of quasi-reversible redox CuII/I, CuII/III, FeIII/II, FeIII/I and FeII/I couples.  相似文献   

14.
In the present investigation, PtRuTiOx/C electrocatalyst was prepared by a modified polyol synthesis method and the as-prepared electrocatalyst was treated under the reductive atmosphere (30 vol% H2 in Ar) at 500 °C for 2 h (denoted as PtRuTiOx/C-500) to enhance the interaction between the metal particles and the support. For comparison, the commercial PtRu/C electrocatalyst was also treated by the same procedure as PtRuTiOx/C (denoted as PtRu/C-500). Transmission electron microscopy results indicated that PtRuTiOx/C electrocatalyst exhibited not only a uniform dispersion and narrow size distribution with a smaller particle size, but also excellent stability during the thermal treatment. In contrast, the commercial PtRu/C electrocatalyst is not stable during the thermal treatment and the metal particles greatly agglomerated. The results of CO-stripping voltammetry, single direct methanol fuel cell tests and life-time test jointly showed that PtRuTiOx/C-500 had better durability than commercial PtRu/C while keeping a desirable activity toward methanol electro-oxidation, which may be attributed to the addition of titanium oxide that improved the interaction between noble metal particles and the support.  相似文献   

15.
《Polyhedron》2007,26(9-11):2121-2125
The hybrid organo-inorganic compounds [Cu4(bipy)4V4O11(PO4)2]nH2O (n  5) (1), [Cu2(phen)2(PO4)(H2PO4)2(VO2) · 2H2O] (2) and [Cu2(phen)2(O3PCH2PO3)(V2O5) (H2O)]H2O (3) which present different bridging forms of the phosphate/phosphonate group, show different bulk magnetic properties. We herein analyze the magnetic behaviour of these compounds in terms of their structural parameters. We also report a theoretical study for compound (1) assuming four different magnetic exchange pathways between the copper centres present in the tetranuclear unit. For compound (1) the following J values were obtained J1 = +3.29; J2 = −0.63; J3 = −2.23; J4 = −46.14 cm−1. Compound (2) presents a Curie–Weiss behaviour in the whole range of temperature (3–300 K), and compound (3) shows a maximum for the magnetic susceptibility at 64 K, typical for antiferromagnetic interactions. These data where fitted using a model previously reported in the literature, assuming two different magnetic exchange pathways between the four copper(II) centres, with J1 = −30.0 and J2 = −8.5 cm−1.  相似文献   

16.
Carbon encapsulated magnetic nanoparticles(CEMNs)were synthesized by heating an aqueous glucose solution containing Fe-Au(Au coated Fe nanoparticles)nanoparticles at 160-180℃ for 2 h.This novel hydrothermal approach is not only simple but alsoprovides the surface of CEMNs with functional groups like-OH.The formation of carbon encapsulated magnetic nanoparticles wasnot favored when using pure Fe nanoparticles as cores because of the oxidation of Fe nanoparticles by H2O during the reaction and,therefore,the surfaces of the naked Fe nanoparticles had to be coated by Au shell in advance.TEM,XRD,XPS and VSMmeasurments characterized that they were uniform carbon spheres containing some embedded Fe-Au nanoparticles,with asaturation of 14.6 emu/g and the size of the typical product is$350 nm.  相似文献   

17.
Cu2O was found to be an efficient and economical metal catalyst in the Ullmann cross-coupling reaction of vinyl bromides with imidazole or benzimidazole. The system Cu2O/ethyl 2-oxocyclohexanecarboxylate showed high catalytic activity in MeCN at 80–90 °C. The reaction gave the corresponding coupling products in good to excellent yields.  相似文献   

18.
With the aid of differential phonon spectrometrics (DPS) and surface stress detection, we show that HI and NaI solvation transforms different fractions of the HO stretching phonons from the mode of ordinary water centred at ∼3200 to the mode of hydration shell at ∼3500 cm−1. Observations suggest that an addition of the H  H anti-hydrogen-bond to the Zundel notion, [H(H2O)2]+, would be necessary as the HO bond due H3O+ has a 4.0 eV energy, and the H  H fragilization disrupts the solution network and the surface stress. The I and Na+ ions form each a charge centre that aligns, stretches, and polarize the O:HO bond, resulting in shortening the HO bond and its phonon blue shift in the hydration shell or at the solute-solvent interface. The solute capabilities of bond-number-fraction transition follow: fH = 0, fNa  C, and fI  1  exp(−C/C0) toward saturation, with C being the solute molar concentration and C0 the decay constant. The fH = 0 evidences the non-polarizability of the H+ because of the H  H formation. The linear fNa(C) suggests the invariance of the Na+ hydration shell size because of the fully-screened cationic potential by the H2O dipoles in the hydration shell but the nonlinear fI(C) fingerprints the I  I interactions at higher concentrations. Concentration trend consistency between Jones–Dole’s viscosity and the fNaI(C) coefficient may evidence the same polarization origin of the solution viscosity and surface stress.  相似文献   

19.
Nitrogen doped carbon nanosheets supported molybdenum carbides nanoparticles (MoxC/NCS) have been synthesized by tuning the mass ratio of melamine and ammonia molybdate. The Mo2C/NCS-10 exhibits superior electrocatalytic performance and stability for HER, which was attributed to N-doped carbon nanosheets, small particle size, mesoporous structure, and large electrochemical active surface area.  相似文献   

20.
Nanostructured amorphous RuO2 · xH2O/C composite materials are prepared via a modified sol–gel process using glycolic acid. The glycolate anion, which dissociates from glycolic acid at pH 7, behaves as a stabilizer by adsorbing onto the RuO2 · xH2O surface, thus resulting in particles with a size of about 2 nm. As evidenced by zeta potential measurements, the surface charge of RuO2 · xH2O becomes more electronegative as the amount of glycolic acid increases. After heat treatment at 160 oC to remove the stabilizer, RuO2 · xH2O/C is found to exhibit an amorphous structure. The specific capacitance of RuO2 · xH2O/C particles (40 wt% Ru) prepared in the presence of glycolic acid (0.3 g L−1) is 462 F g−1, which is 30% higher than that of the material prepared in the absence of glycolic acid. Both the nanosized particles and the amorphous structure mainly contribute to this increase in the specific capacitance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号