首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Quantum dot structures designed for multi-color infrared detection and high temperature (or room temperature) operation are demonstrated. A novel approach, tunneling quantum dot (T-QD), was successfully demonstrated with a detector that can be operated at room temperature due to the reduction of the dark current by blocking barriers incorporated into the structure. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers placed in the structure. A two-color tunneling-quantum dot infrared photodetector (T-QDIP) with photoresponse peaks at 6 μm and 17 μm operating at room temperature will be discussed. Furthermore, the idea can be used to develop terahertz T-QD detectors operating at high temperatures. Successful results obtained for a T-QDIP designed for THz operations are presented. Another approach, bi-layer quantum dot, uses two layers of InAs quantum dots (QDs) with different sizes separated by a thin GaAs layer. The detector response was observed at three distinct wavelengths in short-, mid-, and far-infrared regions (5.6, 8.0, and 23.0 μm). Based on theoretical calculations, photoluminescence and infrared spectral measurements, the 5.6 and 23.0 μm peaks are connected to the states in smaller QDs in the structure. The narrow peaks emphasize the uniform size distribution of QDs grown by molecular beam epitaxy. These detectors can be employed in numerous applications such as environmental monitoring, spectroscopy, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.  相似文献   

2.
Time-resolved photoluminescence (PL), steady-state PL, and electroluminescence (EL) techniques have been used to characterize the carrier relaxation processes and carrier escape mechanisms in self-assembled InAs/GaAs quantum dot (SAQD) p-i-n structures under reverse bias. The measurements were performed between 5 K and room temperature on a ring mesa sample as a function of bias. At 100 K, the PL decay time originating from the n  =  1 SAQD decreases with increasing reverse bias from ∼3 ns under flat band condition to∼ 400 ps for a bias of −3 V. The data can be explained by a simple model based on electron recombination in the quantum dots (QDs) or escape out of the dots. The escape can occur by one of three possible routes: direct tunneling out of the distribution of excited electronic levels, thermally assisted tunneling of ground state electrons through the upper excited electronic states or thermionic emission to the wetting layer.  相似文献   

3.
Infrared detectors based on quantum wells and quantum dots have attracted a lot of attention in the past few years. Our previous research has reported on the development of the first generation of quantum dots-in-a-well (DWELL) focal plane arrays, which are based on InAs quantum dots embedded in an InGaAs well having GaAs barriers. This focal plane array has successfully generated a two-color imagery in the mid-wave infrared (i.e. 3–5 μm) and the long-wave infrared (i.e. 8–12 μm) at a fixed bias voltage. Recently, the DWELL device has been further modified by embedding InAs quantum dots in InGaAs and GaAs double wells with AlGaAs barriers, leading to a less strained InAs/InGaAs/GaAs/AlGaAs heterostructure. This is expected to improve the operating temperature while maintaining a low dark current level. This paper examines 320 × 256 double DWELL based focal plane arrays that have been fabricated and hybridized with an Indigo 9705 read-out integrated circuit using Indium-bump (flip-chip) technology. The spectral tunability is quantified by examining images and determining the transmittance ratio (equivalent to the photocurrent ratio) between mid-wave and long-way infrared filter targets. Calculations were performed for a bias range from 0.3 to 1.0 V. The results demonstrate that the mid-wave transmittance dominates at these low bias voltages, and the transmittance ratio continuously varies over different applied biases. Additionally, radiometric characterization, including array uniformity and measured noise equivalent temperature difference for the double DWELL devices is computed and compared to the same results from the original first generation DWELL. Finally, higher temperature operation is explored. Overall, the double DWELL devices had lower noise equivalent temperature difference and higher uniformity, and worked at higher temperature (70 K and 80 K) than the first generation DWELL device.  相似文献   

4.
Zero bias photodetector which was suitable for top-illuminated and side-illuminated was fabricated. Maximal bandwidth-efficiency product (BEP) value could be achieved when the epitaxial layer structure was optimized. The 3-dB bandwidth of the zero bias was 12.27 GHz, which was numerically above 80% of that maximum value. The measured external quantum efficiency of the photodetector was 17% at the zero bias and 1550 nm. The dark current of the photodetector with 12-μm diameter was less than 9 × 10−8 A at a reverse bias of 0.1 V. The influence of doping gradient profile on photodetector performance was illustrated by simulation comparison. The important aspects of the design of the high-speed low-bias photodetector were explained. The phenomenon of the photodetector at the reverse bias which was not the higher the better was explained. The improvement in performance of the photodetector was discussed. The fabrication process and the testing process were described in detail.  相似文献   

5.
A monolithic silicon CMOS optoelectronic integrated circuit (OEIC) is designed and fabricated using standard 0.35-μm CMOS technology. This OEIC monolithically integrates light emitting diode (LED), silicon dioxide waveguide, photodetector and receiver circuit on a single silicon chip. The silicon LED operates in reverse breakdown mode and can emit light at 8.5 V. The output optical power is 31.2 nW under 9.8 V reverse bias. The measured spectrum of LED showed two peaks at 760 nm and 810 nm, respectively. The waveguide is composed of silicon dioxide/metal multiple layers. The responsivity of the n-well/p-substrate diode photodetector is 0.42 A/W and the dark current is 7.8 pA. The LED-emitted light transmits through the waveguide and can be detected by the photodetector. Experimental results show that on-chip optical interconnects are achieved by standard CMOS technology successfully.  相似文献   

6.
Third generation thermal imagers with dual/multi-band operation capability are the prominent focus of the current research in the field of infrared detection. Dual band quantum-well infrared photodetector (QWIP) focal plane arrays (FPAs) based on various detection and fabrication approaches have been reported. One of these approaches is the three-contact design allowing simultaneous integration of the signals in both bands. However, this approach requires three In bumps on each pixel leading to a complicated fabrication process and lower fill factor.If the spectral response of a two-stack QWIP structure can effectively be shifted between two spectral bands with the applied bias, dual band sensors can be implemented with the conventional FPA fabrication process requiring only one In bump on each pixel making it possible to fabricate large format dual band FPAs at the cost and yield of single band detectors. While some disadvantages of this technique have been discussed in the literature, the detailed assessment of this approach has not been performed at the FPA level yet. We report the characteristics of a large format (640 × 512) voltage tunable dual-band QWIP FPA constructed through series connection of MWIR AlGaAs–InGaAs and LWIR AlGaAs–GaAs multi-quantum well stacks, and provide a detailed assessment of the potential of this approach at both pixel and FPA levels. The dual band FPA having MWIR and LWIR cut-off wavelengths of 5.1 and 8.9 μm provided noise equivalent temperature differences as low as 14 and 31 mK (f/1.5) with switching voltages within the limits applicable by commercial read-out integrated circuits. The results demonstrate the promise of the approach for achieving large format low cost dual band FPAs.  相似文献   

7.
The reduction of the dark current without reducing the photocurrent is a considerable challenge in developing far-infrared (FIR)/terahertz detectors. Since quantum dot (QD) based detectors inherently show low dark current, a QD-based structure is an appropriate choice for terahertz detectors. The work reported here discusses multi-band tunnelling quantum dot infrared photo detector (T-QDIP) structures designed for high temperature operation covering the range from mid-to far-infrared. These structures grown by molecular beam epitaxy consist of a QD (InGaAs or InAlAs) placed in a well (GaAs/AlGaAs) with a double-barrier system (AlGaAs/InGaAs/AlGaAs) adjacent to it. The photocurrent, which can be selectively collected by resonant tunnelling, is generated by a transition of carriers from the ground state in the QD to a state in the well coupled with a state in the double-barrier system. The double-barrier system blocks the majority of carriers contributing to the dark current. Several important properties of T-QDIP detectors such as the multi-colour (multi-band) nature of the photoresponse, the selectivity of the operating wavelength by the applied bias, and the polarization sensitivity of the response peaks, are also discussed.  相似文献   

8.
Linewidth enhancement factor (LEF) of InAs/InP quantum dot (QD) multi-wavelength lasers (MWLs) emitting around 1.5 μm is investigated both above and below the threshold. Above the threshold, LEFs at three different wavelengths around the gain peak of 1.53 μm by the injection locking technique are obtained to be 1.63, 1.37 and 1.59. Then by Hakki–Paoli method LEF is found to decrease with increased current and shows a value of less than 1 below the threshold. These small LEF values have clearly indicated that our developed InAs/InP QDs are perfect and promising gain materials for QD MWLs, QD mode-locked lasers (QD MLLs) and QD distributed-feedback (QD DFB) lasers around 1.5 μm.  相似文献   

9.
Results of modeled photodetector characteristics in (CdS/ZnSe)/BeTe multi-well diode with p–i–n polarity are reported. The dark current density (JV) characteristics, the temperature dependence of zero-bias resistance area product (R0A), the dynamic resistance as well as bias dependent dynamic resistance (Rd) and have been analyzed to investigate the mechanisms limiting the electrical performance of the modeled photodetectors. The quantum efficiency, the responsivity and the detectivity have been also studied as function of the operating wavelength. The suitability of the modeled photodetector is demonstrated by its feasibility of achieving good device performance near room temperature operating at 1.55 μm wavelength required for photodetection in optical communication. Quantum efficiency of ∼95%, responsivity ∼0.6 A/W and D*  5.7 × 1010 cm Hz1/2/W have been achieved at 300 K in X BeTe conduction band minimum.  相似文献   

10.
In this paper, a novel structure for quantum ring inter-subband photodetectors (QRIP) is proposed to reduce its dark current. Some additional layers including asymmetric multi-barrier resonant tunneling (AMBRT) in absorption region layers are exploited to provide near unity tunneling probability for generated photocurrents and completely reject thermally generated electrons. AMBRT structure consists of three asymmetric AlGaAs barriers and two InGaAs wells which are designed for operation wavelength of generated photocurrents by absorption of 20 μm. Simulation results show that AMBRT can considerably reduce the dark current compared to previously proposed resonant tunneling structure about three orders of magnitude. As a consequent, higher specific detectivity for AMBRT-QRIP is obtained in the order of ∼1011 cm Hz1/2/W at 100 K.  相似文献   

11.
The effects of atomic hydrogen and polyimide passivation on R0A product of type-II InAs/GaSb superlattice photo detectors for cut-off wavelength of both 6.5 μm and 12 μm were investigated. Low temperature current–voltage measurement shows that the use of atomic hydrogen during molecular beam epitaxy growth can improve R0A product by 260% for 6.5 μm cut-off superlattice diodes and by 50% for 12 μm cut-off ones. The R0A product of polyimide-passivated diodes with 12 μm cut-off is about 80% higher than those un-passivated ones. Wannier–Stark oscillations at higher reverse bias were observed for polyimide-passivated superlattice diodes with 12 μm cut-off. No Wannier–Stark oscillations were observed for un-passivated superlattice diodes, indicating that surface leakage current dominates in un-passivated diodes, while intrinsic dark current mechanisms such as tunneling and diffusion current dominate in polyimide-passivated diodes.  相似文献   

12.
We report the growth by Molecular Beam Epitaxy (MBE), fabrication and characterization of silicon doped 20 layer InAs dot in a well quantum dot infrared photo detector (DWELL-QDIP) device structures. Two structures with InAs dots of vertical heights of 50 Å and 40 Å were compared. A 2–8 μm band normal incidence photo response of the detector with polarization and bias dependence was obtained at 77 K. The specific peak detectivity D1 be 0.8 × 109 Jones for one of the detectors.  相似文献   

13.
Present work explores the mid-IR photodetection mechanism in III–V quantum confined system in twofold ways. Firstly, it models the extent of spectral linewidth broadening of photo-detector. Secondly, it investigates whether a strong perturbation of light can modulate the electronic bandstructure. Photo-absorption mechanism in the detector correlated to reduced carrier lifetime in ground state leading to homogeneous spectral widening is calculated. Besides, contribution of non-uniform size and composition of quantum dots towards spectral broadening is modeled in order to get the envelop of inhomogeneously broadened photocurrent spectrum. Our model generates photocurrent spectrum with 1.4 μm broadening centered at 3.5 μm at 77 K for a DWELL-IP, which agrees with the experimental result. The calculated photocurrent spectral width of 1.3 μm for GaAs/AlGaAs Quantum Well (QW) centered at 8.31 μm at 77 K also supports experimental data. In addition, our calculation reveals the emergence of a broad resonant peak in the spectrum of QW-IP in far infrared region (20–50 μm) as the photon volume density increases up to 0.1% of carrier density inside the active region. We introduce a hybrid density-of-states for strongly coupled electron–photon system to explain both mid and far IR peak.  相似文献   

14.
《Current Applied Physics》2010,10(2):416-418
We studied nonselective, vertical dry etching of GaAs and AlGaAs/GaAs structure in high pressure capacitively coupled BCl3/N2 plasmas. The operating pressure was fixed at 150 m Torr. We found that there was an optimized process condition for nonselective and vertical etching of GaAs and AlGaAs/GaAs at the relatively high pressure. It was noted that there was a range of % N2 (i.e. 20–40%) where nonselective etching of GaAs over AlGaAs could be achieved in the BCl3/N2 mixed plasma. We also found that dry etching of GaAs and AlGaAs/GaAs structure provided quite vertical and smooth surface when % N2 was in the range of 0–20% in the BCl3/N2 plasma. The maximum etch rates for GaAs (0.41 μm/min) and AlGaAs/GaAs structure (0.42 μm/min) were obtained with 20–30% N2 composition in the plasma.  相似文献   

15.
In this paper we report an analytical modeling of N+-InP/n0-In0.53Ga0.47As/p+-In0.53Ga0.47As p-i-n photodetector for optical fiber communication. The results obtained on the basis of our model have been compared and contrasted with the simulated results using ATLAS? and experimental results reported by others. The photodetector has been studied in respect of energy band diagram, electric field profile, doping profile, dark current, resistance area-product, quantum efficiency, spectral response, responsivity and detectivity by analytical method using closed form equations and also been simulated by using device simulation software ATLAS? from SILVACO® international. The photodetector exhibits a high quantum efficiency ~90%, responsivity ~1.152–1.2 A/W in the same order as reported experimentally by others, specific detectivity ~5 × 109 cm Hz1/2 W?1at wavelength 1.55–1.65 μm, dark current of the order of 10?11 A at reverse bias of 1.5 V and 10?13–10?12 A near zero bias. These values are comparable to those obtained for practical p-i-n detectors. The estimated noise equivalent power (NEP) is of the order of 2.5 × 10?14 W.  相似文献   

16.
In this paper, a mid-/long-wave dual-band detector which combined PπMN structure and unipolar barrier was developed based on type-II InAs/GaSb superlattice. A relevant 320 × 256 focal plane array (FPA) was fabricated. Unipolar barrier and PπMN structure in our dual band detector structure were used to suppress cross-talk and dark current, respectively. The two channels, with respective 50% cut-off wavelength at 4.5 μm and 10 μm were obtained. The peak quantum efficiency (QE) of mid wavelength infrared (MWIR) band and long wavelength infrared (LWIR) band are 53% at 3.2 μm under no bias voltage and 40% at 6.4 μm under bias voltage of −170 mV, respectively. And the dark current density under 0 and −170 mV of applied bias are 1.076 × 10−5 A/cm2 and 2.16 × 10−4 A/cm2. The specific detectivity of MWIR band and LWIR band are 2.15 × 1012 cm·Hz1/2/W at 3.2 μm and 2.31 × 1010 cm·Hz1/2/W at 6.4 μm, respectively, at 77 K. The specific detectivity of LWIR band maintains above 1010 cm·Hz1/2/W at the wavelength range from 4.3 μm to 10.2 μm under −170 mV. The cross-talk, selectivity parameter at 3.0 μm, about 0.14 was achieved under bias of −170 mV. Finally, the thermal images were taken by the fabricated FPA at 77 K.  相似文献   

17.
Short-/Mid-Wavelength dual-color infrared focal plane arrays based on Type-II InAs/GaSb superlattice are demonstrated on GaSb substrate. The material is grown with 50% cut-off wavelength of 2.9 μm and 5.1 μm for the blue channel and red channel, separately at 77 K. 320 × 256 focal plane arrays fabricated in this wafer is characterized. The peak quantum efficiency without antireflective coating is 37% at 1.7 μm under no bias voltage and 28% at 3.2 μm under bias voltage of 130 mV. The peak specific detectivity are 1.51 × 1012 cm·Hz1/2/W at 2.5 μm and 6.11x1011 cm·Hz1/2/W at 3.2 μm. At 77 K, the noise equivalent difference temperature presents average values of 107 mK and 487 mK for the blue channel and red channel separately.  相似文献   

18.
Scanning tunneling microscope-light emission (STM-LE) from the Si(1 1 1)-(7×7) surface has been measured using silver tips. For silver tips photon emission was enhanced by more than 100 times as compared with that for tungsten or platinum–iridium alloy tips. A broad spectrum with a single peak at ∼2.25 eV was observed. The spectrum obtained can be reproduced by a theory based on the macroscopic dielectric response of the tip-sample system, indicating that the observed emission arises from the localized plasmons on the silver tip excited by tunneling electrons. Spatial variations in the emission intensity at the atomic scale was observed even under low bias voltage (2 V) and low tunneling current (1 nA) conditions.  相似文献   

19.
Alternative material systems on InP substrate provide certain advantages for mid-wavelength infrared (MWIR), long-wavelength infrared (LWIR) and dual band MWIR/LWIR quantum well infrared photodetector (QWIP) focal plane arrays (FPAs). While InP/InGaAs and InP/InGaAsP LWIR QWIPs provide much higher responsivity when compared to the AlGaAs/GaAs QWIPs, AlInAs/InGaAs system facilitates completely lattice matched single band MWIR and dual band MWIR/LWIR FPAs.We present an extensive review of the studies on InP based single and dual band QWIPs. While reviewing the characteristics of InP/InGaAs and InP/InGaAsP LWIR QWIPs at large format FPA level, we experimentally demonstrate that the cut-off wavelength of AlInAs/InGaAs QWIPs can be tuned in a sufficiently large range in the MWIR atmospheric window by only changing the quantum well (QW) width at the lattice matched composition. The cut-off wavelength can be shifted up to ~5.0 μm with a QW width of 22 Å in which case very broad spectral response (Δλ/λp = ~30%) and a reasonably high peak detectivity are achievable leading to a noise equivalent temperature difference as low as 14 mK (f/2) with 25 μm pitch in a 640 × 512 FPA. We also present the characteristics of InP based two-stack QWIPs with wavelengths properly tuned in the MWIR and LWIR bands for dual color detection. The results clearly demonstrate that InP based material systems display high potential for dual band MWIR/LWIR QWIP FPAs needed by third generation thermal imagers.  相似文献   

20.
We report on a low-bias InAs–InGaAs quantum-dot (QD) infrared photodetector (QDIP) with operating temperature of 150 K. Longwave-infrared (LWIR) detection at the peak wavelength of 11.7 μm was achieved. Peak specific photodetectivity D1 of 1.7 × 109 and 9.0 × 107 cm Hz1/2/W were obtained at the operating temperature T of 78 K and 150 K, respectively. A large photoresponsivity of 8.3 A/W and high photoconductive gain of 1100 were demonstrated at a low-bias voltage of V = 0.5 V at T = 150 K. The low-bias and high-temperature performance demonstration based on InAs–GaAs material systems indicates that the QDIP technology is promising for LWIR sensing and imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号