首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel polymeric, polyacrylonitrile (PAN) nanofibers containing ferroelectric and semiconducting antimony sulfoiodide (SbSI) have been made by electrospinning. SbSI nanowires, used as the filler, have been prepared sonochemically from antimony sulphide (Sb2S3) and antimony tri-iodide (SbI3) for the first time. Nanocrystalline SbSI has been fabricated in ethanol under ultrasonic irradiation (20 kHz, 565 W/cm2) at 323 K within 2 h. The products have been characterized by using techniques such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, high-resolution transmission electron microscopy, selected area electron diffraction and optical diffuse reflection as well as transmission spectroscopy. The good quality of the nanocrystals and their dispersion in the nanofiber’s volume is important because this material is attractive for nanogenerators due to its ferroelectric and piezoelectric properties. The amplitude of the voltage pulse, generated under shock pressure of 3.0 MPa, has reached 180 V in the prototype PAN/SbSI piezoelectric nanogenerator. The peak output voltage of about 0.2 V was measured in bending/releasing conditions with the deformation frequency of 1 Hz.  相似文献   

2.
This paper presents for the first time the nanocrystalline, semiconducting ferroelectrics antimony sulfoiodide (SbSI) grown in multiwalled carbon nanotubes (CNTs). It was prepared sonochemically using elemental Sb, S and I in the presence of methanol under ultrasonic irradiation (35 kHz, 2.6 W/cm2) at 323 K for 3 h. The CNTs filled with SbSI were characterized by using techniques such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, high-resolution transmission electron microscopy, selected area electron diffraction, and optical diffuse reflection spectroscopy. These investigations exhibit that the SbSI filling the CNTs is single crystalline in nature and in the form of nanowires. It has indirect forbidden energy band gap EgIf = 1.871(1) eV.  相似文献   

3.
A novel sonochemical method for direct preparation of nanocrystalline antimony selenoiodide (SbSeI) has been established. The SbSeI gel was synthesized using elemental Sb, Se, and I in the presence of ethanol under ultrasonic irradiation (35 kHz, 2 W/cm2) at 50 °C for 2 h. The product was characterized by using techniques such as powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and optical diffuse reflection spectroscopy (DRS). The SEM and HRTEM investigations exhibit that the as-prepared samples are made up of large quantity nanowires with lateral dimensions of about 20–50 nm and lengths reaching up to several micrometers and single crystalline in nature.  相似文献   

4.
A sonochemical method for direct preparation of nanowires of SbS1?xSexI solid solution has been established. The SbS1?xSexI gel was synthesized using elemental Sb, S, Se and I in the presence of ethanol under ultrasonic irradiation (35 kHz, 2 W/cm2) at 50 °C for 2 h. The product was characterized by using techniques such as powder X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray analysis, selected area electron diffraction, and optical diffuse reflection spectroscopy. The SEM and HRTEM investigations exhibit that the as-prepared samples are made up of large quantity nanowires with lateral dimensions of about 10–50 nm and lengths reaching up to several micrometers and single-crystalline in nature. The increase of molar composition of Se affects linear decrease of the indirect forbidden optical energy gap as well as the distance between (121) planes of the SbS1?xSexI nanowires.  相似文献   

5.
Nano-structure of a new 0D Pb(II) coordination supramolecular compound, [Pb4(8-Quin)6](ClO4)2(1), L = 8-HQuin = 8-hydroxyquinolin ligand has been synthesized by use of a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) and elemental analyses. The structure of compound 1 was determined by single-crystal X-ray diffraction. The single crystal X-ray data of compound 1 implies that the Pb+2 ions are five coordinated. Each lead atom is coordinated to nitrogen and oxygen atoms of 8-hydroxyquinolin ligand. Topological analysis shows that the compound 1 is 1,2,3,4,4M12-1net. Nanoparticles of lead(II) oxide have been prepared by calcination of lead(II) coordination polymer at 500 °C that were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD) and IR spectroscopy.  相似文献   

6.
《Current Applied Physics》2010,10(3):853-857
Silver nanowires of 50–190 nm in diameters along with silver nanoparticles in the size range of 60–200 nm in prismatic and hexagonal shapes are synthesized through chemical process. The lengths of the silver nanowires lie between 40 and 1000 μm. The characterizations of the synthesized samples are done by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–visible absorption spectroscopy. The syntheses have been done by using two processes. In the first process, relatively thicker and longer silver nanowires are synthesized by a soft template liquid phase method at a reaction temperature of 70 °C with methanol as solvent. In the second process, thinner silver nanowires along with silver nanoparticles are prepared through a polymer mediated polyol process at a reaction temperature of 210 °C with ethylene glycol as solvent. The variations of photoluminescence (PL) emission from the silver nanocluster dispersed in methanol as well as in ethylene glycol are recorded at room temperature under excitation wavelengths lying in between 300 and 414 nm. The blue–green PL emission is observed from the prepared samples and these emissions are assigned to radiative recombination of Fermi level electrons and sp- or d-band holes.  相似文献   

7.
《Current Applied Physics》2010,10(2):636-641
In this paper, a very simple procedure was presented for the reproducible synthesis of large-area SnO2 nanowires (NWs) on a silicon substrate by evaporating Sn powders at temperatures of 700, 750, and 800 °C. As-obtained SnO2 NWs were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. They revealed that the morphology of the NWs is affected by growth temperature and the SnO2 NWs are single-crystalline tetragonal. The band gap of the NWs is in the range of 4.2–4.3 eV as determined from UV/visible absorption. The NWs show stable photoluminescence with an emission peak centered at around 620 nm at room-temperature. The sensors fabricated from the SnO2 NWs synthesized at 700 °C exhibited good response to LPG (liquefied petroleum gas) at an operating temperature of 400 °C.  相似文献   

8.
SiC nanowires with fins have been prepared by chemical vapor deposition in a vertical vacuum furnace by using a powder mixture of milled Si and SiO2 and gaseous CH4 as the raw materials. The products were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). These investigations confirm that the nanowires with fins are cubic β-SiC. The diameter of the fins is about 100–120 nm and the diameter of the inner core stems is about 60–70 nm. The formation process of the β-SiC nanowires with fins is analyzed and discussed briefly.  相似文献   

9.
In this work, NiO nanowires have been synthesized by a hydrothermal reaction of NiCl2 with Na2C2O4 in the presence of ethylene glycol at 180 °C for 12 h, then calcinated at 400 °C for 2 h. The NiO nanowires were analyzed by means of scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The resulting current–voltage (IV) characteristics of the NiO nanowires exhibited a clear rectifying behavior. This rectify behavior was attributed to the formation of a Schottky contact between Au coated atomic force microscopy (AFM) tip and NiO nanowires (nano-M/SC) which was dominated by the surface states in NiO itself. Photo-assisted conductive AFM (PC-AFM) was used to demonstrate how the IV characteristics are influenced by the surface states. Our IV results also showed that the nano-M/SCs had a good photoelectric switching effect at reverse bias.  相似文献   

10.
Ni/NiO nanocomposites were synthesized using solution combustion method and characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX) and carbon, hydrogen, nitrogen (CHN) analyser. The Ni or NiO content in Ni/NiO nanocomposites vary with the quantity of HNO3 used for the synthesis. Magnetic coercivity (Hc) of Ni/NiO nanocomposites is found to be 413 Oe which can be used in magnetic applications. A feeble exchange bias of 7 Oe is seen from the NiO rich Ni/NiO.  相似文献   

11.
Magnetic PtCo/Au nanocomposites with narrow size distribution were synthesized in a reverse micelle, followed by a post-synthesis handling of the stabilizer-exchange technique. The PtCo/Au nanocomposites were characterized by ultraviolet visible spectroscopy, X-ray diffraction and transmission electron microscopy, respectively. Superconducting quantum interference device studies revealed that the nanocomposites were superparamagnetic above the blocking temperature (TB=69 K), while the samples were ferromagnetic with Hc (628 Oe) and Ms (2.97 emu/g) at 5 K.  相似文献   

12.
Carbon nanotubes (CNTs) with 40–100 nm in diameter and tens of micrometers in length were prepared via catalytic pyrolysis of phenol resin in Ar at 673–1273 K using ferric nitrate as a catalyst precursor. Structure and morphology of pyrolyzed resin were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Ferric nitrate was transformed to Fe3O4 at 673 K, and to metallic Fe and FexC carbide at 873–1273 K. The optimal weight ratio of Fe catalyst to phenol resin for growing CNTs was 1.00 wt%, and the optimal temperature was 1073 K. In addition, use of a high pressure increased the yield of CNTs. Density functional theory (DFT) calculations suggest that Fe catalysts facilitate the CNTs growth by increasing the bond length and weakening the bond strength in C2H4 via donating electrons to the C atoms in it.  相似文献   

13.
The oxidation of Fe(111) was studied using Auger electron spectroscopy (AES), low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), ion scattering spectroscopy (ISS) and scanning tunnelling microscopy (STM). Oxidation of the crystal was found to be a very fast process, even at 200 K, and the Auger O signal saturation level is reached within ~ 50 × 10? 6 mbar s. Annealing the oxidised surface at 773 K causes a significant decline in apparent surface oxygen concentration and produces a clear (6 × 6) LEED pattern, whereas after oxidation at ambient temperature no pattern was observed. STM results indicate that the oxygen signal was reduced due to the nucleation of large, but sparsely distributed oxide islands, leaving mainly the smooth (6 × 6) structure between the islands. The reactivity of the (6 × 6) layer towards methanol was investigated using temperature programmed desorption (TPD), which showed mainly decomposition to CO and CO2, due to the production of formate intermediates on the surface. Interestingly, this removes the (6 × 6) structure by reduction, but it can be reformed from the sink of oxygen present in the large oxide islands simply by annealing at 773 K for a few minutes. The (6 × 6) appears to be a relatively stable, pseudo-oxide phase, that may be useful as a model oxide surface.  相似文献   

14.
Well crystalline undoped and Cd-doped ZnO rosette-like structures were successfully synthesized at low temperature (80 °C) via solution process technique during 30 min. Zinc nitrate, cadmium nitrate, sodium hydroxide and hexamine were used as starting materials. The morphology and microstructure were determined by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy. X-ray diffraction indicated that the structure has a single phase with wurtzite structure. FESEM indicated that rosette like structures have been formed. This rosette consists of nanorods with length 210 and 460 nm and diameter 50 and 74 nm for undoped and Cd doped ZnO, respectively. HRTEM showed a decrease in the lattice parameter after the Cd doping. EDX showed that the amount of Cd incorporated into ZnO is 6.4 wt.%. Photoluminescence measurements taken on both doped and undoped samples showed that, in the Cd-doped ZnO nanostructures, the band-edge UV emission is blue shifted and the broad green emission intensity decreased.  相似文献   

15.
This paper reports on the spectral analysis of novel Lithium Zinc Vanadate (LiZnVO4) phosphor prepared by a solid state reaction method. Emission spectrum of LiZnVO4 has shown a bright green emission at 533 nm with λexci = 359 nm. A bright green color emission has also been noticed directly from this phosphor under an UV source. For this luminescent phosphor, X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), Fourier-transform IR spectroscopy (FTIR), Raman Spectrum, Comprehensive Differential Thermo gravimetric Analysis (TG–DTA) have also been carried out.  相似文献   

16.
The nitrogen (N) doped Ti4O7 photocatalyst was prepared from urea as a nitrogen source by a microwave method. The resulting photocatalyst was characterized by X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), UV–visible diffuse reflectance spectroscopy (UV–Vis DRS) and UV–vis spectroscopy (UV–Vis). 0.1 M N doped Ti4O7 photocatalyst exhibited methylene blue decomposition efficiency of 100% which was prepared by microwave treatment for above 30 min. Rate constant was found to be 0.028910 min−1 in the first order kinetic.  相似文献   

17.
MMoO4 (M=Ca, Ba) particles were synthesized by a metathetic reaction in ethylene glycol assisted by cyclic microwave irradiation followed by further heat-treatment. The MMoO4 (M=Ca, Ba) particles were well crystallized after heat-treatment at 400–600 °C for 3 h. The microstructures exhibited fine morphologies with sizes of 0.5–1 μm and 1.5–2 μm for the CaMoO4 and BaMoO4 particles, respectively. The synthesized MMoO4 (M=Ca, Ba) particles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The optical properties were examined by photoluminescence emission and Raman spectroscopy.  相似文献   

18.
The present investigation describes the addition of iron (Fe) in order to improve the supercapacitive properties of MnO2 electrodes using galvanostatic mode. These amorphous worm like Fe: MnO2 electrodes are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and wettability test. The supercapacitive properties of MnO2 and Fe: MnO2 electrodes are investigated using cyclic voltammetry, chronopotentiometry and impedance techniques. It is seen that the supercapacitance increases with increase in Fe doping concentration and achieved a maximum of 173 F g?1 at 2 at% Fe doping. The maximum supercapacitance obtained is 218 F g?1 for 2 at% Fe: MnO2 electrode. This hydrous binary oxide exhibited ideal capacitive behavior with high reversibility and high pulse charge–discharge property between ?0.1 and +0.9 V/SCE in 1 M Na2SO4 electrolyte indicating a promising electrode material for electrochemical supercapacitors.  相似文献   

19.
Spinel-type manganese oxide/porous carbon (Mn3O4/C) nanocomposite powders have been simply prepared by a thermal decomposition of manganese gluconate dihydrate under an Ar gas flow at above 600 °C. The structure and texture of the Mn3O4/C nanocomposite powders are investigated by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) equipped scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), selected area-electron diffraction (SA-ED), thermogravimetric and differential thermal analysis (TG-DTA) and adsorption/desorption of N2 gas at ?196 °C. The electrochemical properties of the nanocomposite powders in 1 M KOH aqueous solution are studied, focusing on the relationship between their structures and electrochemical capacitance.In the nanocomposite powders, Mn3O4 nano particles approximately 5 nm in size are dispersed in a porous carbon matrix. The nanocomposite powders prepared at 800 °C exhibit a high specific capacitance calculated from cyclic voltammogram of 350 and 600 F g?1 at a sweep rate of 1 and 0.1 mV s?1, respectively. The influence of the heating temperature on the structure and the electrochemical properties of nanocomposite powders is also discussed.  相似文献   

20.
We report here the growth of Ag film and its thermal stability on the TiO2(1 1 0)-(1×1) surface using combination techniques of low-energy ion scattering (LEIS), X-ray photoelectron spectroscopy (XPS), and low-energy electron diffraction (LEED). At a surface temperature as low as 125 K, a 2D growth of Ag films seems to occur for submonolayer coverages up to ∼0.8 ML. Annealing of low temperature grown Ag films to 500 K for coverage of 1–2.4 ML would result in the formation of metastable Ag layers with rest of Ag forming 3D needle-like islands on top of this Ag film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号