首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cobalt-free cubic perovskite oxide, SrFe0.9Nb0.1O3?δ (SFN) was investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD results showed that SFN cathode was chemically compatible with the electrolyte Sm0.2Ce0.8O1.9 (SDC) for temperatures up to 1050 °C. The electrical conductivity of SFN sample reached 34–70 S cm?1 in the commonly operated temperatures of IT-SOFCs (600–800 °C). The area specific resistance was 0.138 Ω cm2 for SFN cathode on SDC electrolyte at 750 °C. A maximum power density of 407 mW cm?2 was obtained at 800 °C for single-cell with 300 μm thick SDC electrolyte and SFN cathode.  相似文献   

2.
The BaCo0.7Fe0.3?yNbyO3?δ oxides (BCFNy, y = 0.00–0.12) were synthesized by the conventional solid state reaction process and investigated as a novel cathode for intermediate temperature solid oxide fuel cells(IT-SOFCs). Cubic perovskite, with enhanced phase stability at higher Nb concentration, was obtained at y ? 0.04. The unit cell volumes increased with y, reached a maximum at y = 0.10, and then decreased. The niobium doping concentration also had a significant effect on the electrochemical performance of BCFNy materials. Among the various BCFNy oxides tested, BCFN0.10 possessed the smallest interfacial polarization resistance (Rp). The Rp was as low as 0.9406, 0.1300, 0.0211, and 0.0082 Ω cm2 at 500, 600, 700, and 800 °C, respectively. With a 220 μm-thick Sm0.2Ce0.1O1.9 (SDC) as electrolyte and BCFN0.10 as the cathode, a fuel cell provides maximum power densities of 202, 350, 569, 820, and 1006 mW cm?2 at 600, 650, 700, 750, and 800 °C, respectively. The encouraging results suggested that BCFN0.10 was a very promising cathode material for IT-SOFCs.  相似文献   

3.
High performance La2−xSrxCuO4−δ (x = 0.1, 0.3, 0.5) cathode materials for intermediate temperature solid oxide fuel cell (IT-SOFCs) were prepared and characterized. The investigation of electrical properties indicated that La1.7Sr0.3CuO4 cathode has low area specific resistance (ASR) of 0.16 Ω cm2 at 700 °C and 1.2 Ω cm2 at 500 °C in air. The rate-limiting step for oxygen reduction reaction on La1.7Sr0.3CuO4 electrode changed with oxygen partial pressure and measurement temperature. La1.7Sr0.3CuO4 cathode exhibits the lowest overpotential of about 100 mV at a current density of 150 mA cm−2 at 700 °C in air.  相似文献   

4.
Transition-metal doped double-perovskite structure oxides GdBaCo2/3Fe2/3Ni2/3O5+δ (FN-GBCO), GdBaCo2/3Fe2/3Cu2/3O5+δ (FC-GBCO), GdBaCoCuO5+δ (C-GBCO) and pristine GdBaCo2O5+δ (GBCO) were synthesized via a citrate combustion method. The thermal-expansion coefficient (TEC) and electrochemical performance of the oxides were investigated as potential cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The TEC exhibited by the FC-GBCO cathode up to 900 °C is 14.6 × 10?6 °C?1, which is lower than the value of GBCO (19.9 × 10?6 °C?1). Area specific resistances (ASR) of 0.165 Ω cm2 at 700 °C and 0.048 Ω cm2 at 750 °C were achieved for the FC-GBCO cathode on a Ce0.9Gd0.1O1.95 (CGO) electrolyte. An electrolyte supported (300 μm thick) single-cell configuration of FC-GBCO/CGO/Ni-CGO attained a maximum power density of 435 mW cm?2 at 700 °C. The unique composition of GBCO co-doped with Fe and Cu ions in the Co sites exhibited reduced TEC and enhancement of electrochemical performance and good chemical compatibility with CGO, and this composition is proving to be a potential cathode for IT-SOFCs.  相似文献   

5.
We propose a new way to develop high-performance cathodes for IT-SOFCs by utilizing the interfacial reactions. SrCoOx was selected as the starting electrode material, which took a vacancy-ordered 2H BaNiO3-type structure and showed negligible ionic conductivity and low electrical conductivity. Phase reactions between SrCoOx and Sm0.2Ce0.8O1.9 happened at 900 °C or higher, resulting in the incorporation of Sm and Ce into its lattice structure. This promoted the phase transition to a cubic perovskite and led to substantial increase in the electrical conductivity and oxygen mobility of the electrode. By utilizing such phase reactions, the SrCoOx + Sm0.2Ce0.8O1.9 composite was developed into a high performance electrode with a low area specific resistance of 0.08 Ω cm?2 at 650 °C. An anode-supported cell with such electrode delivered a peak power density of 795 mW cm?2 at 600 °C.  相似文献   

6.
Composite cathodes were synthesized via a citrate combustion method followed by an organic precipitation method. The cathodes were of K2NiF4-type crystal structure with x wt.% Ce0.9Gd0.1O1.95 (CGO)–(100 ? x) wt.% La1.96Sr0.04CuO4 + δ (LSC), where x = 0, 10, 20 and 30. The individual structural phases of the composite cathodes were characterized using a third-generation synchrotron source beamline powder X-ray diffractometer (XRD). The porous grain morphology of the CGO–LSC cathode composite for a symmetrical half-cell was determined from cross-sectional scanning electron microscopy images and elemental line profiles. The composite cathode was made of 20 wt.% CGO–80 wt.% LSC (CL20–80) and was coated onto a Ce0.9Gd0.1O1.95 electrolyte. It showed the lowest area specific resistance (ASR) of 0.07 Ω cm2 at 750 °C. An electrolyte-supported (300 μm thick) single-cell configuration of CL20–80/CGO/Ni-CGO attained a maximum power density of 626 mW cm? 2 at 700 °C. The unique composite composition of CL20–80 demonstrates enhanced electrochemical performance and good chemical compatibility with the CGO electrolyte, as compared with the pure LSC (CL0–100) cathode for IT-SOFCs.  相似文献   

7.
A power density of over 1.4 W cm?2 at 0.7 V was achieved at 750 °C for an anode-supported YSZ thin electrolyte fuel cell with a dense Sm0.2Ce0.8O1.9 (SDC) interlayer fabricated by pulsed laser deposition, while the cell with a conventional porous SDC interlayer exhibited only 0.8 W cm?2 at this voltage. The dense SDC interlayer significantly reduced the ohmic resistance of the fuel cell. For example, at 750 °C, the ohmic resistance of the fuel cell with a dense SDC interlayer was 0.08 Ω cm2; while that of the cell with a porous SDC interlayer fabricated by conventional screen-printing was 0.16 Ω cm2. The pronounced reduction in ohmic resistance might be due to the fully dense structure and thus improved electrical conductivity of the SDC interlayer, increased contact area at the interface between the dense SDC interlayer and the YSZ electrolyte, and suppressed Zr migration into the SDC interlayer.  相似文献   

8.
A cost-effective cell fabrication process was developed for intermediate temperature solid oxide fuel cells (IT-SOFCs). Co-doped ceria Ce0.8Gd0.05Y0.15O1.9 (GYDC) was synthesized by carbonate co-precipitation method. Lithiated NiO was prepared by glycine-nitrate combustion method and adopted as cathode material for IT-SOFCs. Single cell was fabricated by one-step dry-pressing and co-firing anode, anode functional layer (AFL), electrolyte and cathode together at 1200 °C for 4 h. The cell presented decent performance and an overall electrode polarization resistance of 0.54 Ω cm2 has been achieved at 600 °C. These results demonstrate the possibility of using lithiated NiO as cathode material for ceria-based IT-SOFCs and the development of affordable fuel cell devices is encouraged.  相似文献   

9.
《Solid State Sciences》2007,9(3-4):240-246
In this paper, we present the synthesis and characterizations of NaSICON-type ionic conducting ceramics of the general formula Na1+xM1.775Six−0.9P3.9−xO12 with 1.8  x  2.2 and M = Zr or Hf. The effect of the total substitution of zirconium by hafnium on electric properties has been studied. The various compositions were prepared by using the sol–gel method and the synthesized precursors were characterized by coupled DTA–TG. The oxides obtained after pyrolysis of the precursors were identified by X-ray diffraction. A sintering study by thermodilatometry permits to select the best thermal cycle adapted to our ceramics. Furthermore, the electric conductivity of the sintered ceramic samples was characterized by complex impedance spectroscopy. These results show that ceramics containing Zr synthesized by soft method, present a higher total conductivity than those obtained in literature (to be around 10−4 S cm−1). The total substitution of Zr by Hf still improves this conductivity for some compositions.  相似文献   

10.
A novel single phase BaCe0.5Bi0.5O3 ? δ (BCB) was employed as a cathode material for a proton-conducting solid oxide fuel cell (SOFC). The single cell, consisting of a BaZr0.1Ce0.7Y0.2O3 ? δ (BZCY7)-NiO anode substrate, a BZCY7 anode functional layer, a BZCY7 electrolyte membrane and a BCB cathode layer, was assembled and tested from 600 to 700 °C with humidified hydrogen (~3% H2O) as the fuel and the static air as the oxidant. An open-circuit potential of 0.96 V and a maximum power density of 321 mW cm?2 were obtained for the single cell. A relatively low interfacial polarization resistance of 0.28Ω cm2 at 700 °C indicated that the BCB was a promising cathode material for proton-conducting SOFCs.  相似文献   

11.
Transition metal oxides with composite xLi2MnO3 ·  (1  x)LiMO2 rocksalt structures (M = Mn, Ni, Co) are of interest as a new generation of cathode materials for high energy density lithium-ion batteries. After electrochemical activation to 4.6 or 4.8 V (vs. Li0) at 50 °C, xLi2MnO3 · (1  x)LiMn0.33Ni0.33Co0.33O2 (x = 0.5, 0.7) electrodes deliver initial discharge capacities (>300 mAh/g) at a low current rate (0.05 mA/cm2) that exceed the theoretical values for lithiation back to the rocksalt stoichiometry (240–260 mAh/g), at least during the early charge/discharge cycles of the cells. Attention is drawn to previous reports of similar, but unaccounted and unexplained anomalous behavior of these types of electrode materials. Possible reasons for this anomalous capacity are suggested. Indications are that electrodes in which M = Mn, Ni and Co do not cycle with the same stability at 50 °C as those without cobalt.  相似文献   

12.
A series of ceria-based composite materials consisting of samaria doped ceria (SDC) and binary carbonates(Li2CO3–Na2CO3) were examined as functional electrolytes for low-temperature solid oxide fuel cells (SOFCs). DTA and SEM techniques were applied to characterize the phase- and micro-structural properties of the composite materials. Conductivity measurements were carried on the composite electrolytes with a.c. impedance in air. A transition of ionic conductivity with temperature was occurred among all samples with different carbonate content, which related to the interface phase. Single cells based on the composite electrolytes, NiO as anode and lithiated NiO as cathode, were fabricated by a simple dry-pressing process and tested at 400–600 °C. The maximum output power at 600 °C increased with the carbonate content in the composite electrolytes, and reached the maximum at 25 wt.%, then decreased. Similar trend has also shown at 500 °C, but the maximum was obtained at 20wt.%. The best performances of 1085 mW cm−2 at 600 °C and 690 mW cm−2 at 500 °C were achieved for the composite electrolytes containing 25 and 20 wt.% carbonates, respectively. During fuel cell operation, it found that the SDC-carbonate composites are co-ionic (O2−/H+) conductors. At lower carbonate contents, both oxide–ion and proton conductions were significant, when the content increased to 20–35 wt.%, proton conduction dominated. The detailed conduction mechanism in these composites needs further investigation.  相似文献   

13.
A cathode-supported electrolyte film was fabricated by tape casting and co-sintering techniques. (La0.8Sr0.2)0.95MnO3 (LSM95), LSM95/Zr0.89Sc0.1Ce0.01O2?x (SSZ), and SSZ were used as materials of cathode substrate, cathode active layer, and electrolyte, respectively. CuO–NiO–SSZ composite anode was deposited on SSZ surface by screen-printing and sintered at 1250 °C for 2 h. The effects of CuO addition to NiO–SSZ anode on the performance of cathode-supported SOFCs were investigated. CuO can effectively improve the sintering activity of NiO–SSZ. The assembled cells were electrochemically characterized with humidified H2 as fuel and O2 as oxidant. With 4 wt.% CuO addition, the ohmic resistance decreased from 3 to 0.46 Ω cm2, and at the same time the polarization resistance decreased from 3.4 to 0.74 Ω cm2. In comparison with the cell without CuO, the maximum power density at 850 °C increased from 0.054 to 0.446 W cm?2 with 4 wt.% CuO addition.  相似文献   

14.
Herein, the Sr2Fe1.5Mo0.5O6 (SFM) precursor solution is infiltrated into a tri-layered “porous La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM)/dense LSGM/porous LSGM” skeleton to form both SFM/LSGM symmetrical fuel cells and functional fuel cells by adopting an ultra-fast and time-saving procedure. The heating/cooling rate when fabricating is fixed at 200 °C/min. Thanks to the unique cell structure with high thermal shock resistance and matched thermal expansion coefficients (TEC) between SFM and LSGM, no SFM/LSGM interfacial detachment is detected. The polarization resistances (Rp) of SFM/LSGM composite cathode and anode at 650 °C are 0.27 Ω·cm2 and 0.235 Ω·cm2, respectively. These values are even smaller than those of the cells fabricated with traditional method. From scanning electron microscope (SEM), a more homogenous distribution of SFM is identified in the ultra-fast fabricated SFM/LSGM composite, therefore leading to the enhanced performance. This study also strengthens the evidence that SFM can be used as high performance symmetrical electrode material both running in H2 and CH4. When using H2 as fuel, the maximum power density of “SFM-LSGM/LSGM/LSGM-SFM” functional fuel cell at 700 °C is 880 mW cm 2. By using CH4 as fuel, the maximum power densities at 850 and 900 °C are 146 and 306 mW cm 2, respectively.  相似文献   

15.
The SrSc0.2Co0.8O3−δ (SSC) perovskite was investigated as a cathode material for low temperature solid-oxide fuel cell. The material showed an almost linear thermal expansion from room temperature to 1000 °C in air with the average thermal expansion coefficient of only 16.9 × 10−6 K−1. The Sc-doping made the absence of Co4+ in SSC, which resulted in not only dramatically reduced thermal expansion coefficient but also extremely high oxygen vacancies concentrations in the lattice at low temperature. The area specific polarization resistance was 0.206 Ω cm2 for SSC at 550 °C, which is about 52% lower than the value of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathode. A peak power density as high as 564 mW cm−2 was obtained at 500 °C based on a 20 μm thick Sm0.2Ce0.8O1.9 electrolyte by adopting SSC cathode.  相似文献   

16.
Novel nano-structured Pd+yttrium doped ZrO2 (YSZ) electrodes have been developed as cathodes of intermediate temperature solid oxide fuel cells (IT-SOFCs). Nano-sized Pd particles were introduced into the rigid and porous YSZ structure by PdCl2 solution impregnation. The results show that Pd nanoparticles (20–80 nm) were uniformly distributed in the porous YSZ structure; and such nano-structured composite cathodes were highly active for the O2 reduction reaction, with polarization resistances (RE) of 0.11 and 0.22 Ω cm2 at 750 and 700 °C and activation energy of 105 kJ mol−1 that is significantly lower than those for the conventional perovskite-based cathodes (130–201 kJ mol−1).  相似文献   

17.
Novel ultrasonic and sonoelectrochemical methods for preparing Proton Exchange Membrane Fuel Cell (PEMFC) electrodes are described. Platinum loaded on Nafion-bonded carbon anodes in Membrane Electrode Assemblies (MEAs) were prepared in K2PtCl4 aqueous solutions by galvanostatic pulse electrodeposition in the absence and presence of power ultrasound (20 kHz). It was found that PEMFC electrodes prepared sonoelectrochemically showed better performance compared to those prepared by (i) galvanostatic pulse method only (i.e. silent conditions) and (ii) conventional method. Maximum power densities of 98.5 mW cm?2 were found for anodes prepared sonoelectrochemically compared with 91.5 mW cm?2 (by galvanostatic pulse method alone) and 86 mW cm?2 (by conventional method).  相似文献   

18.
The cathode electrode structure of the direct methanol fuel cell (DMFC) was improved by a novel catalyst ink preparation method. Regulation of the solvent polarity in the cathode catalyst ink caused increases in the electrochemical active surface (EAS) for the oxygen reduction reaction (ORR) as well as decreases in the methanol crossover effect. In a two-step preparation, agglomerates consisting of catalyst and Nafion ionomers were decreased in size, and polar groups in the ionomers formed organized networks in the cathode catalyst layer. Despite Pt catalysts in the cathode being only 0.5 mg cm? 2, the maximum power density of the improved membrane electrode assembly (MEA) was 120 mW cm? 2, at 3 M methanol, which was much larger than that of traditional MEA (67 mW cm? 2).  相似文献   

19.
We present here a soft matter solid composite electrolyte obtained by inclusion of a polymer in a semi-solid organic plastic lithium salt electrolyte. Compared to lithium bis-trifluoromethanesulfonimide-succinonitrile (LiTFSI-SN), the (100  x)%-[LiTFSI-SN]: x%-P (P: polyacrylonitrile (PAN), polyethylene oxide (PEO), polyethylene glycol dimethyl ether (PEG)) composites possess higher ambient temperature ionic conductivity, higher mechanical strength and wider electrochemical window. At 25 °C, ionic conductivity of 95%-[0.4 M LiTFSI-SN]: 5%-PAN was 1.3 × 10−3 Ω−1 cm−1 which was twice that of LiTFSI-SN. The Young’s modulus (Y) increased from Y  0 for LiTFSI-SN to a maximum ∼1.0 MPa for (100  x)%-[0.4 M LiTFSI-SN]: x%-PAN samples. The electrochemical voltage window for composites was approximately 5 V (Li/Li+). Excellent galvanostatic charge/discharge cycling performance was obtained with composite electrolytes in Li|LiFePO4 cells without any separator.  相似文献   

20.
This paper reports on the application of cornstalks-derived high-surface-area microporous carbon (MC) as the efficient photocathode of dye-sensitized solar cells (DSCs). The photocathode, which contains MC active material, Vulcan XC–72 carbon black conductive agent, and TiO2 binder, was obtained by a doctor blade method. Electronic impedance spectroscopy (EIS) of the MC film uniformly coated on fluorine doped SnO2 (FTO) glass displayed a low charge-transfer resistance of 1.32 Ω cm2. Cyclic voltammetry (CV) analysis of the as-prepared MC film exhibited excellent catalytic activity for I3?/I? redox reactions. The DSCs assembled with the MC film photocathode presented a short-circuit photocurrent density (Jsc) of 14.8 mA cm?2, an open-circuit photovoltage (Voc) of 798 mV, and a fill factor (FF) of 62.3%, corresponding to an overall conversion efficiency of 7.36% under AM 1.5 irradiation (100 mW cm?2), which is comparable to that of DSCs with Pt photocathode obtained by conventional thermal decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号