首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A series of highly-active nickel and lanthanum co-doped SrTiO3 photocatalysts were synthesized via sol–gel process and their photocatalytic activities were evaluated by degradation of methylene blue (MB). The obtained samples were found by XRD, XPS and UV–vis to have a perovskite structure in which Ni and La atoms were incorporated into SrTiO3. After Ni and La doped into SrTiO3, the absorption edge of SrTiO3 powder was greatly shifted from 380 nm to 700 nm. Under a 100 W incandescent lamp irradiating for 14 h, a 100% of MB was degraded, which is much higher than those of pure SrTiO3 and commercial Degussa P25. The optimal range of Ni and La dopants is 0.1–1.0 mol%. The formation of a new absorption edge and the large surface area may be the main reasons for the high activity.  相似文献   

2.
《Comptes Rendus Chimie》2015,18(8):875-882
W–S–N-tri-doped TiO2 photocatalysts (WSNTiO2) were prepared by a simple sol–gel method. Tungstic acid, sodium sulfate and urea were used as tungsten, sulfur and nitrogen sources, respectively. The morphology and microstructure characteristics of the photocatalysts were evidenced by means of XRD, BET, TEM, SEM and UV–vis DRS techniques. The XRD results show that the main crystal phase of samples is anatase. It was also found that the tri-doping of TiO2 increases its BET specific surface area from 95 to 121 m2·g−1. Besides, it was shown that tri-doping narrows the band gap of TiO2 effectively, which has greatly improved the photocatalytic activity in the visible light region. The photocatalytic activity of tri-doped TiO2 powders was compared to that of bi-doped ones through the degradation of Congo Red (CR) under visible irradiation. Thus, the prepared 0.5% W–N–S–TiO2 heat treated at 450 °C showed the best photocatalytic activity compared to the prepared pure TiO2, Degussa P25, and co-doped samples (WNTiO2 and WSTiO2). In particular, a Congo Red degradation rate of approximately 99% was reached after only 35 min of visible light irradiation in the presence of 0.5% of WNSTiO2. Total organic carbon (TOC) removal of CR was up to 72% and confirmed its significant mineralization in the presence of 0.5% of WNSTiO2 photocatalyst.  相似文献   

3.
Mesoporous TiO2?xAy (A = N, S) thin films were fabricated using thiourea as a doping resource by a combination of sol-gel and evaporation-induced self-assembly (EISA) processes. The results showed that thiourea could serve two functions of co-doping nitrogen and sulfur and changing the mesoporous structure of TiO2 thin films. The resultant mesoporous TiO2?xAy (A = N, S) exhibited anatase framework with a high porosity and a narrow pore distribution. The formation of the O–Ti–N and O–Ti–S bonds in the mesoporous TiO2?xAy (A = N, S) were substantiated by the XPS spectra. A new bandgap in visible light region (520 nm) corresponding to 2.38 eV could be formed by the co-doping. After being illuminated for 3 h, methyl orange could be degraded nearly completely by the co-doped sample under both ultraviolet irradiation and visible light illumination. While pure mesoporous TiO2 could only degrade 60% methyl orange under UV illumination and showed negligible photodegradation capability in the visible light range. Furthermore, the photo-induced hydrophilic activity of TiO2 film was improved by the co-doping. The mesoporous microstructure and high visible light absorption could be attributed to their good photocatalytic acitivity and hydrophilicity.  相似文献   

4.
Cu and N-doped TiO2 photocatalysts were synthesized from titanium (IV) isopropoxide via a microwave-assisted sol-gel method. The synthesized materials were characterized by X-ray diffraction, UV-vis diffuse reflectance, photoluminescence (PL) spectroscopy, SEM, TEM, FT-IR, Raman spectroscopy, photocurrent measurement technique, and nitrogen adsorption–desorption isotherms. Raman spectra and XRD showed an anatase phase structure. The SEM and TEM images revealed the formation of an almost spheroid mono disperse TiO2 with particle sizes in the range of 9-17 nm. Analysis of N2 isotherm measurements showed that all investigated TiO2 samples have mesoporous structures with high surface areas. The optical absorption edge for the doped TiO2 was significantly shifted to the visible light region. The photocurrent and photocatalytic activity of pure and doped TiO2 were evaluated with the degradation of methyl orange (MO) and methylene blue (MB) solution under both UV and visible light illumination. The doped TiO2 nanoparticles exhibit higher catalytic activity under each of visible light and UV irradiation in contrast to pure TiO2. The photocatalytic activity and photocurrent ability of TiO2 have been enhanced by doping of the titania in the following order: (Cu, N) - codoped TiO2 > N-doped TiO2 > Cu-doped TiO2 > TiO2. COD result for (Cu, N)-codoped TiO2 reveals ∼92% mineralization of the MO dye on six h of visible light irradiation.  相似文献   

5.
Herein, we report visible light active mesoporous cadmium bismuth niobate(CBN) nanospheres as a photocatalyst for hydrogen(H_2) generation from copious hydrogen sulfide(H_2S). CBN has been synthesized by solid state reaction(SSR) and also using combustion method(CM) at relatively lower temperatures.The as-synthesized materials were characterized using different techniques. X-ray diffraction analysis shows the formation of single phase orthorhombic CBN. Field emission scanning electron microscopy and high resolution-transmission electron microscopy showed the particle size in the range of ~0.5–1 μm for CBN obtained by SSR and 50–70 nm size nanospheres using CM, respectively. Interestingly, nanospheres of size 50–70 nm self assembled with 5–7 nm nanoparticles were observed in case of CBN prepared by CM.The optical properties were studied using UV–visible diffuse reflectance spectroscopy and showed band gap around ~3.0 eV for SSR and 3.1 eV for CM. The slight shift in band gap of CM is due to nanocrystalline nature of material. Considering the band gap in visible region, the photocatalytic activity of CBN for hydrogen production from H_2S has been performed under visible light. CBN prepared by CM has shown utmost hydrogen evolution i.e. 6912 μmol/h/0.5 g which is much higher than CBN prepared using SSR.The enhanced photocatalytic property can be attributed to the smaller particle size, crystalline nature,high surface area and mesoporous structure of CBN prepared by combustion method. The catalyst was found to be stable, active and can be utilized for water splitting.  相似文献   

6.
Titanium dioxide (TiO2) is recognized as the most efficient photocatalytic material, but due to its large band gap energy it can only be excited by UV irradiation. Doping TiO2 with nitrogen is a promising modification method for the utilization of visible light in photocatalysis. In this work, nitrogen-doped TiO2 films were grown by atomic layer deposition (ALD) using TiCl4, NH3 and water as precursors. All growth experiments were done at 500 °C. The films were characterized by XRD, XPS, SEM and UV–vis spectrometry. The influence of nitrogen doping on the photocatalytic activity of the films in the UV and visible light was evaluated by the degradation of a thin layer of stearic acid and by linear sweep voltammetry. Light-induced superhydrophilicity of the films was also studied. It was found that the films could be excited by visible light, but they also suffered from increased recombination.  相似文献   

7.
《Solid State Sciences》2007,9(10):944-949
A Bi-based oxychloride Na0.5Bi1.5O2Cl with a layered structure as a novel efficient photocatalyst was studied in the present paper. The powder was synthesized by a solid state reaction method. It was characterized by X-ray diffraction, scanning electron microscope and UV–vis diffuse reflectance spectrum. Degradation of methyl orange was used to evaluate the photocatalytic activity. The as-synthesized Na0.5Bi1.5O2Cl has a smaller optical band gap of 3.04 eV than BiOCl (Eg = 3.44 eV). It possesses a fair visible-light-response ability. The UV-induced photocatalytic activity follows the decreasing order of BiOCl > Na0.5Bi1.5O2Cl > TiO2, different from the order of Na0.5Bi1.5O2Cl > TiO2 > BiOCl under visible light irradiation. The dispersion of Pt over Na0.5Bi1.5O2Cl leads to an obvious increase in the photocatalytic performance. The internal electric fields between [Na0.5Bi1.5O2] and [Cl] slabs favor the efficient separation of photostimulated electron–hole pairs.  相似文献   

8.
A novel visible-light-driven layered photocatalyst of Bi-based PbBiO2Cl is prepared by solid-state reaction. The optical band gap of PbBiO2Cl is determined to be 2.45 eV by UV–vis diffuse reflectance spectroscopy. Generally, the photocatalytic activity for degrading methyl orange (MO) over PbBiO2Cl is higher than that over anatase-type TiO2 under UV light and visible light illumination. The RuO2 loading over PbBiO2Cl leads to an obvious increase in photocatalytic performance. The internal electric fields between [PbBiO2] and [Cl] slabs are considered to be useful for the efficient separation of electron–hole pairs upon photoexcitation.  相似文献   

9.
《Comptes Rendus Chimie》2017,20(2):97-106
Two sol–gel methods (the citric acid gel and the Pechini methods) were used for the preparation of nano-sized undoped, Bi-doped and Bi, Cu co-doped SrTiO3 samples to optimize their properties for the photocatalytic degradation of dibutyl phthalate. The perovskite-like phase was detected for the samples prepared by the citric acid gel method after calcination at 800 °C for 3 h, while in the case of the Pechini method; it was detected after calcination at 800 °C for 9 h. The particle size of the samples prepared by the citric acid gel method is greater than that of the samples prepared by the Pechini method. Cu doping in both methods increased the particle size. Cu doping, Bi doping and Bi, Cu co-doping in both methods shifted the absorption edge to the visible light range as well. The band gap of Bi, Cu co-doped SrTiO3 is smaller than that of Bi doped SrTiO3, which in turn is smaller than that of undoped SrTiO3. The highest removal of the total organic carbon (TOC) of DBP was obtained using a Bi, Cu co-doped SrTiO3 sample prepared by the citric acid gel method. TOC removal of DBP followed pseudo-first order kinetics.  相似文献   

10.
Ag and Au nanoparticles were found to significantly enhance the photocatalytic activity of self-organized TiO2 nanotubular structures. The catalyst systems are demonstrated to be highly efficient for the UV-light induced photocatalytic decomposition of a model organic pollutant – Acid Orange 7. The metallic nanoparticles with a diameter of ∼10 ± 2 nm (Ag) and ∼28 ± 3 nm (Au) were attached to a nanotubular TiO2 layer that consists of individual tubes of ∼100 nm of diameter, ∼2 μm in length and approx. 15 nm of wall thickness. Both metal particle catalyst systems enhance the photocatalytic decomposition significantly more on the nanotubes support than placed on a compact TiO2 surface.  相似文献   

11.
The transition metal-doped zinc oxides, Zn1?xMxO (M = Cu, Mn and Fe) were synthesized by using solid-state reaction method and co-precipitation method. Samples prepared by co-precipitation method showed exactly same structure and properties compared to those made by solid-state reaction method. XRD, XRF and mapping analyses showed that Zn was successfully substituted with Cu, Mn and Fe by co-precipitation method. Zn1?xMxO samples exhibited new absorption shoulder in visible light region so that they showed photocatalytic activity in the visible light region. The highest photocatalytic activity under visible light was found in the Mn-substituted zinc oxide.  相似文献   

12.
以静电纺丝技术制备的TiO_2纳米纤维为基质和反应物,结合一步水热法制得Gd-N共掺杂SrTiO_3/TiO_2复合纳米纤维光催化剂。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电镜(HRTEM)、X射线光电子能谱(XPS)、紫外-可见漫反射(UV-Vis DRS)和荧光光谱(PL)等方法对其微观结构、形貌和光学性能进行表征。结果表明:SrTiO_3和TiO_2形成异质结能够使光生电子和空穴得到很好的分离,而Gd-N共掺杂产生新带隙,可以拓宽光谱响应范围至可见光区,并引起晶格缺陷,成为光生电子-空穴对的浅势捕获阱。Gd-N共掺杂与异质结的协同作用有效提高了SrTiO_3/TiO_2复合纳米纤维的可见光催化活性。  相似文献   

13.
The glass-forming region of the GeSe2–In2Se3–KI system was reported firstly. The dependence of physical, thermal and optical properties on compositions as formula of (1 ? x)(0.8GeSe2–0.2In2Se3)–xKI (x = 0, 0.1, 0.2, 0.3) chalcohalide glasses was investigated. The allowed direct transition and indirect transition, and Urbach energy of samples were calculated according to the classical Tauc equation. The results show that the glass system has good thermal stability and that there is an obvious blue-shift at the visible absorbing cutting-off edge. When the dissolved amount of KI increased from 0 to 30 mol%, the direct optical band gap and the indirect optical band gap were in the range from 1.617 to 1.893 eV and 1.573 to 1.857 eV. With the decrease of the molar refraction the refractive index decreases, optical band gap and metallization criterion increase. The relationship between energy band gap and metallization criterion was analyzed and the optical properties of chalcohalide glasses were summarized.  相似文献   

14.
Drastic changes in the bonding are found in amorphous hydrogenated carbon nitride (a-CNx:H) film as a function of nitrogen concentration (or N/C ratio). The total C-sp3 fraction and hardness shows a sharp decrease (at N/C = 0.40) whereas optical band gap and resistivity shows a gradual increase as nitrogen concentration increases from 0.07 to 0.58. Raman spectrum of a-CNx:H film is fitted with both Gaussian (integrated intensity ratios are used instead of the height ratios of the Lorentzian (D mode)) and Breit–Wigner–Fano (BWF, G Mode) method for a comparative study of optical properties and crystalline size of the graphite domain. Visible Raman (488 nm) spectroscopy finds that the in-plane crystalline size of graphite domains (La) is increased (from 34 to 38 Å) with nitrogen incorporation. Optical band gap of a-CNx:H solid measured by means of ellipsometry differs from the one obtained from Raman spectroscopy. In addition, we propose a simple extension of the existing band gap model to obtain the optical band gap of a-CNx:H film from Raman spectrum. Our estimation agrees well with the experimental value.  相似文献   

15.
《中国化学快报》2020,31(10):2774-2778
The rapid recombination of photoinduced electron-hole pairs as well as the deficiency of high-energy carriers restricted the redox ability and products selectivity. Herein, the heterojunction of SnS2-decorated three-dimensional ordered macropores (3DOM)-SrTiO3 catalysts were in-situ constructed to provide transmit channel for high-energy electron transmission. The suitable band edges of SnS2 and SrTiO3 contribute to the Z-scheme transfer of photogenerated carrier. The 3DOM structure of SrTiO3-based catalyst possesses the slow light effect for enhancing light adsorption efficiency, and the surface alkalis strontium is benefit to the boosting adsorption for CO2. The in-situ introduced SnS2 decorated on the macroporous wall surface of 3DOM-SrTiO3 altered the primary product from CO to CH4. The Z-scheme electron transfer from SnS2 combining with the holes in SrTiO3 occurred under full spectrum photoexcitation, which improved the excitation and utilization of photogenerated electrons for CO2 multi-electrons reduction. As a result, (SnS2)3/3DOM-SrTiO3 catalyst exhibits higher activity for photocatalytic CO2 reduction to CH4 compared with single SnS2 or 3DOM-SrTiO3, i.e., its yield and selectivity of CH4 are 12.5 μmol g-1 h-1 and 74.9%, respectively. The present work proposed the theoretical foundation of Z-scheme heterojunction construction for enhancing photocatalytic activity and selectivity for CO2 conversion.  相似文献   

16.
Noble metal-modified TiO2 films were prepared by electron beam deposition of Pt, Pd, Au and Ag on the surface of TiO2 films with diameters ranging from <1 nm to 500 nm. The morphology of the films was characterized by X-ray diffractometry (XRD), field emission scanning electron microscope (FMSEM) and transmission electron microscope (TEM). The photocatalytic capability of the films were tested and compared by degradation of methyl orange (MO) in aqueous solutions under both UV and visible light illumination.  相似文献   

17.
This work reports on a novel nitrosyl–ruthenium complex bearing the azanaphthalene ligand quinazoline (qui) in its coordination sphere. The product crystallizes with an additional quinazoline molecule, yielding the compound cis-[Ru(bpy)2(qui)NO](PF6)3 · (qui). This feature leads to an absorption band at λmax = 430 nm in CH3CN and λmax = 420 nm in phosphate buffer, which promotes the photorelease of nitric oxide under visible light irradiation (λ > 400 nm), in 1 ethanol:1 water (v/v) mixture or under physiological pH. Both the intensity and energy of this transition are dependent on solvent and solution pH, suggesting that the transition has a charge transfer nature, and that the association of the second quinazoline molecule with the complex is driven by weak interactions, possibly of the π-stacking type.  相似文献   

18.
In order to absorb a broad spectrum in visible region, a co-sensitized TiO2 electrode was prepared by CdSe and Mg-doped CdSe quantum dots (Q dots). The power conversion efficiency of the co-sensitized Q dots photoelectrochemical solar cells (PECs) showed 1.03% under air mass 1.5 condition (I = 100 mW/cm2), which is higher than that of individual Q dots-sensitized PECs. The incident-photon-to-current conversion efficiency of the co-sensitized PECs showed absorption peaks at 541 and 578 nm corresponding to the two Q dots and displayed a broad spectral response over the entire visible spectrum in the 500–600 nm wavelength domains.  相似文献   

19.
Using a new nitrogen precursor of a mixture of ammonia and hydrazine hydrate, N-doped TiO2 photocatalyst with a high efficiency under visible light was synthesized by a precipitation method. The analysis of X-ray photoelectron spectroscopy (XPS) suggested that the doping concentration of nitrogen was 0.45 at%, while it was 0.21 at% or 0.24 at% using single ammonia or hydrazine hydrate as nitrogen precursor. The patterns of the electron paramagnetic resonance spectroscopy (EPR) indicated that the paramagnetic species of NO22?, NO and Ti3+ existed as the proposed active species. The ultraviolet–visible (UV–vis) spectra revealed that the band-gap of the N-doped TiO2 was 3.12 eV, which was slightly lower than 3.15 eV of pure TiO2. The N-doped TiO2 showed higher efficiency under both ultraviolet (UV) and visible light irradiations. Moreover, the degradation grade of 4-chlorophenol (4-CP) using the as-synthesized N-doped TiO2 under sunlight irradiation for 6 h was 82.0%, which was higher than 66.2% of the pure TiO2, 60.1% or 65.2% of the N-doped TiO2 using single ammonia or hydrazine hydrate as precursor. Density functional theory (DFT) calculations were performed to investigate the visible light response of the N-doped TiO2. Our study demonstrated that the visible activities vary well with the concentrations of NO22? species incorporated by N–TiO2 series photocatalysts and the higher activity of the as-prepared N-doped TiO2 was attributed to the enhancement of the concentration of NO22? species.  相似文献   

20.
Nitrogen-doped titania nanoparticles consisted of pure anatase, rutile and brookite phases were successfully prepared by a solvothermal process in TiCl3-HMT (hexamethylenetetramine, C6H12N4)-alcohol mixed solution. The powders were yellow or beige and showed excellent visible light absorption and photocatalytic ability for the oxidative destruction of nitrogen monoxide under irradiation of visible light of wavelength >510 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号