首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A method and apparatus for measuring the relationship between air–water capillary pressure and water saturation in PEMFC gas diffusion layers is described. Capillary pressure data for water injection and withdrawal from typical GDL materials are obtained, which demonstrate permanent hysteresis between water intrusion and water withdrawal. Capillary pressure, defined as the difference between the water and gas pressures at equilibrium, is positive during water injection and negative during water withdrawal. The results contribute to the understanding of liquid water behavior in GDL materials which is necessary for the development of effective PEMFC water management strategies.  相似文献   

2.
A dearth of experimental capillary pressure data limits our understanding and optimization of liquid water transport in PEMFC gas diffusion layers (GDLs). A microfluidic device and method is described for measuring the capillary pressure as a function of liquid water saturation for these thin porous materials with complex, heterogeneous wetting properties. A sample sandwich (hydrophilic membrane–GDL–hydrophobic membrane) is key for probing the entire hydrophilic and hydrophobic pore volume of the GDL during sequential liquid intrusion and gas intrusion experiments. The capillary pressure curves for an as-purchased Toray 090 and two differentially-processed Avcarb P75T GDLs were evaluated; each material displayed highly repeatable, but quantitatively different, room temperature capillary pressure curves that matched qualitative differences in their macroscopic wettability. The measurements show that hysteresis between the liquid intrusion and gas intrusion curves is significant. For example, both the Toray and fully wet-proofed Avcarb GDLs appear hydrophobic during most of the liquid intrusion curve and hydrophilic during most of the gas intrusion curve. The implications of this work for water management, and future device designs and experiments are described.  相似文献   

3.
The water distribution across the membrane electrolyte assembly (MEA) of a working polymer electrolyte fuel cell (PEFC) was observed in situ using neutron radiography. In order to resolve the distribution between the different layers of the MEA, in plane imaging (cell membrane parallel to the beam) was used. Unprecedented spatial resolution for neutron radiography was obtained using a new detector system available at PSI combined with specific anisotropic resolution enhancement methods. A detrimental effect on performance of excessive water content in the cathode GDL was observed. Depending on the operating condition, a strong separation of the water content between ribs and channel was observed, particularly in the cathode GDL.  相似文献   

4.
由于装配压力的作用,气体扩散层产生形变,对质子交换膜燃料电池性能产生影响。国内外学者主要研究气体扩散层形变后对燃料电池性能产生的影响,但对不同流道宽度的燃料电池探究尚不明确。本文采用有限元法建立一个单流道质子交换膜燃料电池三维模型,研究了不同装配压力以及三种流道与肋度比(流道与肋宽比分别为3:2、1:1、2:3)下,气体扩散层厚度变化规律以及它们对孔隙率和电导率的影响。结果显示,随着装配压力的增加,肋下气体扩散层厚度变薄,孔隙率减小,电导率增加;在相同装配压力下,流道与肋宽度比值越大,肋下孔隙率越小,电导率越大。  相似文献   

5.
Flooding of the cathode flow channel is a major hindrance in achieving maximum performance from Proton Exchange Membrane Fuel Cells (PEMFC) during the scaling up process. Water accumulated between the interface region of Gas Diffusion Layer (GDL) and rib of the cathode flow field can be removed by the use of Porous Sponge Inserts (PSI) on the ribs. In the present work, the experimental investigations are carried out on PEMFC for the various reaction areas, namely 25, 50 and 100 cm2. Stoichiometry value of 2 is maintained for all experiments to avoid variations in power density obtained due to differences in fuel utilization. The experiments include two flow fields, namely Serpentine Flow Field (SFF) and Modified Serpentine with Staggered provisions of 4 mm PSI (4 mm × 2 mm × 2 mm) Flow Field (MSSFF). The peak power densities obtained on MSSFF are 0.420 W/cm2, 0.298 W/cm2 and 0.232 W/cm2 compared to SFF which yields 0.242 W/cm2, 0.213 W/cm2 and 0.171 W/cm2 for reaction areas of 25, 50 and 100 cm2 respectively. Further, the reliability of experimental results is verified for SFF and MSSFF on 25 cm2 PEMFC by using Electrochemical Impedance Spectroscopy (EIS). The use of 4 mm PSI is found to improve the performance of PEMFC through the better water management.  相似文献   

6.
《Fluid Phase Equilibria》1999,164(1):131-142
The dynamic viscosity η of water at temperatures along the saturation line is fitted with an expression taking into account the relative void volume, the enthalpy of vaporization, and the hydrogen bonding, the latter through the Kirkwood dipole orientation correlation parameter, gK. A similar expression is given for the fitting of viscosity data of supercritical water, except that the explicit temperature dependence of ln η on 1/RT is now negative. The self-diffusion coefficients D of water along the saturation line up to the critical point are shown to depend on the fractions of non- and singly hydrogen-bonded water molecules. The high pressure (110 MPa) values of D of supercritical water are a smooth extension of the values for lower temperature water at the same pressure.  相似文献   

7.
In this study, the high resolution hydrogen-deuterium contrast radiography method was applied to elucidate the impact of the micro-porous layer (MPL) on water distribution in the porous fuel cell media. At the steady state, deuterium replaced hydrogen in the anode stream, and the large difference in neutron attenuation of the D(2)O produced at the cathode was used to track the produced water. It was found that the water content peaked in the cathode-side diffusion media (DM) for the cell without MPL, but with an MPL on the anode and cathode DM, the peak water amount was pushed toward the anode, resulting in a relatively flattened water profile through components and demonstrating a liquid barrier effect. Additionally, the dynamic water behavior in diffusion media was analyzed to understand the effect of a MPL and operating conditions. The water content in the DM changed with applied current, although there is a significant amount of residual liquid content that does not appear to be part of capillary channels. The effect of the MPL on irreducible saturation in DM and cell performance was also investigated.  相似文献   

8.
质子交换膜燃料电池气体扩散层的研究进展   总被引:5,自引:0,他引:5  
气体扩散层在燃料电池中起到支撑催化层、收集电流、传导气体和排出反应产物水的重要作用。本文对气体扩散层的组成、制备方法及参数优化的实验研究现状进行了综述,介绍了现有的气体扩散层性质的各种表征方法,指出了研究中存在的问题,提出了气体扩散层的进一步改进方向。  相似文献   

9.
The effect of inhomogeneous compression of GDL under the channel/rib structure of flow-field plate on the temperature distribution in PEMFC is studied. The model utilizes experimentally evaluated GDL parameters for mass and charge transfer, and assumes an analogy between heat and charge transfer. The modeling results are compared with a conventional model that assumes the GDL properties constant. As a result, a significant difference in temperature distributions is observed especially due to varying thermal contact resistance at the GDL/electrode interface when the inhomogeneous compression is taken into account. There are significant temperature gradients through the cell and also in lateral direction of the electrode. With the assumed heat transfer parameters temperature differences of over 15 °C can be observed within a unit cell.  相似文献   

10.
Micro-porous layers (MPLs) play an important role in the water management of polymer electrolyte fuel cells (PEFCs), however, the detailed mechanism of how the produced water is drained from these layers is not well understood. This paper observed the cross-sectional distribution of liquid water inside the cathode MPL to elucidate details of the phase state of the water transported through the MPL. The freezing method and cryo-scanning electron microscope (cryo-SEM) are used for the observations; the freezing method enables immobilization of the liquid water in the cell as ice forms by the freezing, and the cryo-SEM can visualize the water distribution in the vicinity of the MPL at high resolution without the ice melting. It was shown that no liquid water accumulates inside the MPL in operation at 35 °C, while the pores of the MPL are filled with liquid water under very low cell temperature operation, at 5 °C. These results indicate that the produced water passes through the MPL not as a liquid but in the vapor state in usual PEFC operation. Additionally, liquid water at the interface between the MPL and a catalyst layer (CL) was identified, and the effect of the interfacial contact on the water distribution was examined.  相似文献   

11.
质子交换膜燃料电池的水平衡   总被引:1,自引:0,他引:1  
水平衡是制约质子交换膜燃料电池(PEMFC)性能稳定的关键技术之一。本文针对以H2为燃料的PEMFC的水平衡,首先介绍了电池的工作原理及水迁移;通过实验,证明了电池失水、积水对电池性能及寿命的影响,说明了水平衡的重要性;从电池的组成结构及运行参数详细讨论了影响水平衡的主要因素;并对电池水平衡的管理方法作了讨论。  相似文献   

12.
Butanol, a promising biofuel, can be produced by ABE (acetone, butanol and ethanol) fermentation using e.g. Clostridium acetobutylicum. However, the butanol concentration in the resulting broth is limited to only ca. 20 g/L due to the toxicity for the microorganisms. This low product concentration demands an efficient recovery process for successful commercialization of this process. In this study, a structured adsorbent in the form of steel monolith coated with a silicalite-1 film was prepared using the in situ growth method. The adsorbent was carefully characterized by SEM and XRD. The performance of the adsorbent was evaluated by performing breakthrough experiments at room temperature using model ABE fermentation broths and the performance was compared with that of traditional adsorbents in the form of beads. The structured silicalite-1 adsorbent showed less saturation loading time as compared to commercial binder free silicalite-1 beads, reflecting the different dimensions of the columns used, set by experimental constraints. Studies of the desorption process showed that by operating at appropriate conditions, butanol with high concentration i.e. up to 95.2 wt% for butanol–water model system and 88.5 wt% for ABE fermentation broth can be obtained using the structured silicalite-1 adsorbent. Commercial silicalite-1 beads also showed good selectivity but the concentration of butanol in the desorbed product was limited to 70 % for the butanol–water model system and 69 % for ABE fermentation broth, probably as a result of entrained liquid between the beads.  相似文献   

13.
High silica molecular sieves (silicalite, ZSM-5) were tested as adsorbents for gas chromatographic trace analysis. Therefore the retention behaviour of low-boiling organic compounds (hydrocarbons, halogenated hydrocarbons, amines, alcohols and ethers) on these materials was investigated. The specific retention volumes at different temperatures have been determined and elution orders and peak shapes were studied. The retention data allow a simple calculation of the breakthrough volumes (dynamic adsorption capacity) and the chromatographic characterisation of the adsorbents. Both nitrogen and oxygen containing compounds could not—or at least unreproducibely—be eluated up to 300°. The elution order and the peak shape of compounds with the same number of carbon atoms but different geometric and electronic structure (e.g.n-butenes;n-hexane, cyclohexane, benzene) can be explained by the action of exclusion effects and different diffusion barriers. On the basis of calculated breakthrough volumes we conclude that silicalite should be useful in the preconcentration of both saturated C3–C6 hydrocarbons and C1–C2 chlorinated hydrocarbons from gaseous streams.  相似文献   

14.
In this study, a modified genome shuffling method was used to improve γ-decalactone (GDL) production of Yarrowia sp. China General Microbiological Culture Collection Center (CGMCC 2.1405). Five UV mutant strains with higher GDL production or shorter fermentation time were selected as the initial strains for genome shuffling. Conditions of protoplast preparation, regeneration, inactivation, fusion, sporulation of recombinant fusants and ascospore isolation were optimized. Four hereditarily stable haploid recombinants with high GDL production were obtained by three rounds of genome shuffling. Among them, a high GDL-producing recombinant, G3-3.21, producing 3.75 g L?1 of GDL in the fermentation medium after 64 h was obtained. This value is 6.54-fold higher than that of the parent strains CGMCC 2.1405, at the peak production shortened by 8 h. Mathematical kinetic models of CGMCC 2.1405 and G3-3.21 were established to well predict the cell growth and GDL production. The cell growth of G3-3.21 was significantly faster than that of CGMCC 2.1405. The product synthesis constant associated with the strain growth of G3-3.21 was higher than that associated with CGMCC 2.1405. Long-chain fatty-acyl-CoA oxidase activities of G3-3.21 were 833 mU mg?1 and 6.83 times higher than that of CGMCC 2.1405.  相似文献   

15.
The stability of Pt-based/C electrocatalysts used in proton exchange membrane fuel cell (PEMFC) systems is commonly evaluated via accelerated stress testing in half-cell configuration at temperature close to ambient (20  T  25 °C), and 100% relative humidity (liquid electrolyte). Those conditions are by far different from those encountered in PEMFC systems (solid electrolyte, 60  T  80 °C, 0  relative humidity ≤ 100%), and fail in reproducing the morphological changes and the performance losses encountered during real life. Here, using a high surface area Pt/C electrocatalyst, we show that the gap between half-cell and real PEMFC configurations can be bridged by considering the pronounced effect of the temperature. The accelerated stress tests (ASTs) conducted in liquid electrolyte at T = 80 °C more accurately reflect the changes in morphology and surface reactivity occurring in real PEMFC environment, and provide gain in time. Due to massive release of Ptz + ions in the electrolyte during ASTs performed at T = 80 °C, using fresh electrolyte is strongly recommended for correct determination of the oxygen reduction reaction (ORR) kinetics.  相似文献   

16.
在考虑气、液两相水影响的条件下基于微观格点催化层模型对聚合物膜燃料电池(PEMFC)性能进行了模拟. 通过氧浓度分布和反应速率分布的比较, 说明了同时考虑催化层中气、液两相水影响的必要性. 模拟分析了液态水体积分数、氧气浓度及氧还原反应速率等在阴极催化层中的分布情况和影响因素. 考察了不同程度‘水淹’情况下的电池性能以及催化层孔隙率对水传递和电池性能的影响. 结果显示, 催化层中‘水淹’程度对电池性能有显著影响. 催化层中较大的孔隙率便于其中水的排出, 从而有利于提高电池性能.  相似文献   

17.
Nucleation and growth of ice in the fibrous gas-diffusion layer (GDL) of a proton-exchange membrane fuel cell (PEMFC) are investigated using isothermal differential scanning calorimetry (DSC). Isothermal crystallization rates and pseudo-steady-state nucleation rates are obtained as a function of subcooling from heat-flow and induction-time measurements. Kinetics of ice nucleation and growth are studied at two polytetrafluoroethylene (PTFE) loadings (0 and 10 wt %) in a commercial GDL for temperatures between 240 and 273 K. A nonlinear ice-crystallization rate expression is developed using Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory, in which the heat-transfer-limited growth rate is determined from the moving-boundary Stefan problem. Induction times follow a Poisson distribution and increase upon addition of PTFE, indicating that nucleation occurs more slowly on a hydrophobic fiber than on a hydrophilic fiber. The determined nucleation rates and induction times follow expected trends from classical nucleation theory. A validated rate expression is now available for predicting ice-crystallization kinetics in GDLs.  相似文献   

18.
A highly sensitive and specific LC‐ESI‐MS/MS method has been developed and validated for simultaneous quantification of felodipine (FDP) and metoprolol (MPL) in rat plasma (50 μL) using phenacetin as an internal standard (IS) as per the FDA guidelines. Liquid–liquid extraction method was used to extract the analytes and IS from rat plasma. The chromatographic resolution of FDP, MPL and IS was achieved with a mobile phase consisting of 0.2% formic acid in water–acetonitrile (25:75, v/v) with a time program flow gradient on a C18 column. The total chromatographic run time was 4.0 min and the elution of FDP, MPL and IS occurred at 1.05, 2.59 and 1.65 min, respectively. A linear response function was established for the range of concentrations 0.59–1148 and 0.53–991 ng/mL for FDP and MPL, respectively, in rat plasma. The intra‐ and inter‐day accuracy and precision values for FDP and MPL met the acceptance as per FDA guidelines. FDP and MPL were stable in battery of stability studies viz., bench‐top, auto‐sampler and freeze–thaw cycles. The validated assay was applied to a pharmacokinetic study in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Nowadays there is a great concern about new adsorbent materials for either the removal or fixation of arsenic species because of their high toxicity and the health problems associated with such species. In this paper the kinetics of absorption of As(V) on Fe(III)-loaded sponge have been studied and the results are compared with those of other natural and synthetic adsorbents. Arsenate was adsorbed very rapidly by Fe(III)-loaded sponge with saturation being reached in less than ten minutes. Arsenate was also adsorbed by Fe(III)-loaded Lewatit-TP-207 and non-loaded Purolite A100S ion-exchange resins but the times required to reach total saturation of the adsorbent were more than 100 minutes. The experimental data followed first-order kinetics. The extraordinarily superior kinetics are postulated to be related to the open-celled internal structure of the sponge material. The effect of flow rate on the dynamic removal of As(V) was studied in a fixed-bed column reactor for Fe(III)-loaded sponge and Fe(III)-loaded resin. The adsorption of As(V) on fixed-bed columns of adsorbent also indicated better kinetic properties for the sponge. Column studies showed a good correlation between the experimental data and the calculated breakthrough curves obtained by the Wolborska and Clark models. Application of the Wolborska model to the data at low C/C 0 ratios enabled the determination of the kinetic coefficient of mass transfer for the sponge and resin materials at the different flow rates used and gave a good prediction of the 5% breakthrough times. Furthermore, the breakthrough curves were well described by the Clark model at the ratios of concentration of effluent to influent up to 0.5 for the sponge and 0.3 for the Fe(III)-loaded resin. Above these levels, a large deviation occurred for the resin adsorption. Thus, the sponge was found to be kinetically effective and favored for As(V) adsorption from solution over the conventional adsorbents used and for most of the adsorbents reported in the bibliography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号