首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Analytical letters》2012,45(4):715-727
Abstract

The need for low‐cost, robust alcohol sensors has increased with the renewed interest in alternative fuels as well as high‐throughput screening of biological processes involving the production of ethanol. The goal of this research was to develop a miniaturized optical ratiometric ethanol sensor to be used for in situ measurements. The sensor is based on the fluorescent dye Nile Blue Chloride. When in solution, the dye exhibits a single fluorescence peak. However, a dual emission peak is observed upon physical immobilization of the dye in the hydrogel poly(ethylene glycol) dimethacrylate. The dual emission allows for ratiometric measurements, thus circumventing drawbacks associated with fluorescence intensity measurements such as signal variations due to dye bleaching, source intensity fluctuations, etc. In developing this sensor we investigated ethanol sensitivity; alcohol selectivity; response time; and cross‐sensitivity with pH, polarity, and ionic strength. We found that the sensor is sensitive to a broad range of ethanol concentrations, namely 5% to 90% v/v. Due to the hydrogel's restrictive pore size, the sensor is sensitive to short‐chain alcohols such as methanol, ethanol, and propanol, but lacks sensitivity to larger alcohols such as butanol and hexanol. We also found the sensor maintains full functionality after autoclaving. Sensor sensitivity to alcohol in solutions of varying ionic strength is negligible, whereas the solvent's polarity must be controlled to maintain meaningful results. The sensor is most sensitive in acidic and neutral environments, indicating promising use for yeast‐ based alcohol fermentations.  相似文献   

2.
Novel temperature-sensitive membranes have been synthesized by grafting poly(N-isopropyacrylamide) (poly(NIPAAm)) onto a poly(vinyl alcohol) (PVA) backbone using hydrogen peroxide-ferrous ion as initiator. Due to the grafting of poly(NIPAAm), the hydrophilic/hydrophobic balance and the polarity of the pendent groups within the membranes are modified. Significant temperature sensitivity of the grafted membranes is observed close to the LCST of linear poly(NIPAAm) in the pervaporation processes for ethanol-water separation. Both the pervaporation and sorption selectivities for water show a maximum value in the vicinity of 30–32°C for an ethanol content of 75 and 80%. The temperature sensitivity of the grafted membranes also depends on the ethanol concentration. The maxima of pervaporation and sorption selectivities disappear when the ethanol content is lower than 75% because the much larger degree of swelling reduces the size screening effect of the membranes.  相似文献   

3.
Three different derivatives of macrocyclic tetraimine Schiff's base have been synthesized and explored as a neutral ionophores for preparing poly(vinyl chloride) based membrane sensors selective to Dy3+. The addition of sodium tetraphenyl borate and various plasticizers, viz., o-NPOE, DBP, DBBP, DOP and CN has been found to substantially improve the performance of the sensors. The best performance was obtained with the sensor no. 1 having membrane of Schiff's base (SL-1) with composition (w/w) SL-1 (4.5%): PVC (30.5%): o-NPOE (59.5%): NaTPB (5.5%). This sensor exhibits Nernstian response with slope 19.4 mV/decade of activity in the concentration range of  10−8 to 1.0 × 10−2 M Dy3+, performs satisfactorily over wide pH range of (2.8-7.2) with a fast response time (10 s). The sensor was also found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of acetonitrile, methanol or ethanol. The proposed sensor can be used over a period of 1.5 months without significant drift in potentials. The sensor has been also utilized for the determination of Dy3+ level in different soil samples.  相似文献   

4.
Barsan MM  Brett CM 《Talanta》2008,74(5):1505-1510
A new amperometric biosensor for ethanol monitoring has been developed and optimised. The biosensor uses poly(neutral red) (PNR), as redox mediator, which is electropolymerised on carbon film electrodes and alcohol oxidase (AlcOx) from Hansenula polymorpha as recognition element, immobilised by cross-linking with glutaraldehyde (GA) in the presence of bovine serum albumin (BSA) as carrier protein. Optimisation of variables affecting the system was performed and, for chronoamperometric measurements, a potential of −0.300 V versus saturated calomel electrode was chosen in 0.1 M sodium phosphate buffer saline at pH 7.5. The optimised biosensor showed a good sensitivity of 171.8 ± 14.8 nA mM−1 and the corresponding detection limit (signal-to-noise-ratio = 3) of 29.7 ± 1.5 μM. Stability studies showed a good preservation of the bioanalytical properties of the sensor, 57.6% of its initial sensitivity remaining after 3 weeks (the sensor was used two to three times per week). No significant interferences were found from compounds usually present in wine. The biosensor was used for the determination of ethanol in Portuguese red and white wines.  相似文献   

5.
A novel poly (amidoamine) (PAMAM) dendrimer, comprising rhodamine B unit in the core and 1-phenyl-3-methyl-5-pyrazolone unit at the periphery, has been synthesized and characterized. The dendrimer shows dramatic increase in its fluorescence intensity in the presence of proton and metal cations, especially in the presence of Cr(3+). The complex formed by dendrimer and Cr(3+) in ethanol solution has also been studied, considering the potential application for Cr(3+) fluorescent sensor. The influence of the unique chemical structure and resulted photoinduced electron transfer, as well as spirolactam ring-opening on the photophysical properties of the product has been investigated.  相似文献   

6.
This paper describes the development and optimization of an amperometric biosensor for monitoring ethanol in beverages. The biosensor is constructed by cross-linking a quinoprotein alcohol dehydrogenase (QH-ADH) to an Os-complex-modified poly(vinylimidazole) redox polymer using poly(ethylene glycol) diglycidyl ether. The optimum biosensor configuration was evaluated by changing the ratio between enzyme, redox polymer, and cross-linker using conventional graphite rods as basis electrodes. The optimized sensor showed a sensitivity of 0.336±0.025 A M−1 cm2 for ethanol and a detection limit (calculated as three times the signal-to-noise ratio) of 1 μM.This biosensor configuration was further evaluated in a conventional flow-injection system and the applicability for the determination of ethanol in diverse wine samples could be successfully demonstrated. Adaptation of this sensor configuration to screen-printed (SP) electrodes allowed their integration into an automated sequential-injection analyzer and the successful on-line monitoring of ethanol during wine fermentation processes.  相似文献   

7.
An amperometric sensor for the detection of ethanol has been designed. The sensing layer consists of alcohol dehydrogenase (ADH), NADH oxidase and NAD+-dextran, entrapped together in a matrix of poly(vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ). Measurements have been carried out at a low oxidizing potential (equivalent to 250 mV vs. SCE) to detect hexacyanoferrate(II), thus avoiding interferences due to presence of oxidizable compounds in real samples. The influence of the amount of polymer, enzymes and coenzyme in the sensing layer on the sensor sensitivity, linear range and operational stability has been studied. The sensitivity was close to 2 mA 1 mol−1, with a linear range 3 × 10−7 −2 × 10−4M and a response time <2 min. Good operational stability was observed, allowing more than 40 reproducible assays without NAD+ addition. Alcoholic beverages were analysed with the use of sensor and the results showed good correlation with those obtained using a standard spectrophotometric procedure.  相似文献   

8.
A sensor for ethanol is described that is based on the fluorescent probe 5,10,15,20-tetraphenyl porphyrin (TPP). Response is based on the quenching of the fluorescence of TPP by ethanol as a result of electrostatic attraction. The sensor linearly responds to ethanol in the concentration range from 1 to 75 vol.% and was applied to the determination of ethanol in various kinds of wines and whisky.  相似文献   

9.
《Analytical letters》2012,45(3):377-391
Abstract

The analytical parameters of recognizing element of a biosensor for ethanol detection have been estimated in three wild type strains of Pichia angusta. The possibility of increasing sensor selectivity through induction and inhibition of intracellular enzymes in the course of biomass cultivation has been studied. A biosensor based on the cells of strain P. angusta VKM Y‐2518 grown on 1% methanol proved to be the most prospective for ethanol detection. This sensor was insensitive to carbohydrates and organic acids; the interfering compound at ethanol detection was methanol. The lower limit of ethanol detection was 0.012 mM. The optimum of sensor response dependence on pH and ion force of the buffer solution was in the range of pH 7.2–7.6 and around 30 mM, respectively. Indications of the sensor were stable for 5 days. The stability of cells was studied at storage as wet centrifuged biomass at 4°C and in immobilized state at 20, 4, and ?10°C. The storage of centrifuged cells at 4°C proved to be optimal. The sensor based on P. angusta VKM Y‐2518 was used for ethanol detection in alcoholic beverage; besides, it can be used for ethanol detection in biological fluids and at optimization of enzymatic processes.  相似文献   

10.
Introduction The detection and quantitative determination of hydrogen peroxide play importantrole in several fields including biochemistry and environmental chemistry.A highlysensitive H202 sensor is useful to fabricate sensor for various substances by combiningit with hydrogen peroxide—producing oxidases.‘Although electrochemical detection ofH202 has been made via its oxidation or reduction at a variety of electrode materials,these electrodes are susceptible to the interference from electr…  相似文献   

11.
张庆轩  李玉伟  王晶  杨国华  王宗贤 《应用化学》2011,28(10):1122-1129
以聚乙烯吡咯烷酮(PVP)为稳定剂,亚硫酸氢钠和过硫酸铵为引发剂(I),丙烯酰胺(AM)为单体,在体积分数为90%的乙醇水溶液中,采用分散聚合方法合成了聚丙烯酰胺(PAM)双水相乳液。 考察了聚合反应温度、引发剂质量分数、单体质量分数、PVP质量分数对分散聚合转化率、聚合速率、聚合物分子量和乳液稳定性等性质的影响。 结果表明,AM质量分数从10%提高至25%时,初始聚合速率、最终转化率及聚合物相对分子质量增大,其中初始聚合速率增大约20倍。 但单体质量分数不可过高,否则会因体系粘度过大而形成凝胶。 PVP质量分数增大,初始聚合速率及最终转化率变小,但PVP质量分数过大和过小均不利于双水相乳液的稳定。 随着温度的升高,聚合速率显著增加,而聚合物相对分子质量从20 ℃时的5.08×105降至70 ℃时的0.39×105。 引发剂的质量分数从0.05%增加至0.15%时,单体AM转化率增大,而聚合物PAM的相对分子质量则从4.31×105降至3.73×105。 当引发剂质量分数为0.05%时,反应存在20~25 min的诱导期,导致最大聚合速率推后60 min左右出现。 AM、引发剂和稳定剂的质量分数分别为15%、0.05%和6%时,在30 ℃下反应6 h所得乳液的粒径范围为10~75 μm,平均粒径为21.94 μm。 粒径较大且分布较宽,乳液稳定性较差。 转化率50%时分散聚合速率与各组分质量浓度的关系为:rp=kρ0.33Iρ0.84AMρ-2.56PVP,聚合反应表观活化能为40.95 kJ/mol。  相似文献   

12.
The six Schiff-base lariat ether chelates based on 4,13-diaza-18-crown ether, have been synthesized and explored as a neutral ionophores for preparing poly(vinyl chloride) based membrane sensors selective to silver(I). The addition of potassium tetrakis(4-chlorophenyl) borate and various plasticizers, viz., o-NPOE, DBP, DBBP, DOP and CN has been found to substantially improve the performance of the sensors. The best performance was obtained with the sensor no. 5 having membrane of chelate (A6) with composition (w/w) chelate (2.8%):PVC (45.7%):o-NPOE (48.6%):KTpClPB (2.8%). This sensor exhibits Nernstian response with slope 59.3 mV/decade of activity in the concentration range 5.6 × 10−8-1.0 × 10−1 M Ag(I), performs satisfactorily over wide pH range of (3.0-8.0) with a fast response time (12 s). The sensor was also found to work satisfactorily in partially non-aqueous media up to 25% (v/v) content of acetonitrile, methanol or ethanol and can tolerate the concentration 1.0 × 10−2 M of ionic (SDS, TBC) and nonionic (Triton X-100) surfactants. The proposed sensor can be used over a period of 4 months without significant drift in potentials. The response of the sensor was highly selective to Ag+ over a large number of cations and it could therefore be used for Ag+ estimation in blood of occupationally exposed persons.  相似文献   

13.
Cai CX  Xue KH  Zhou YM  Yang H 《Talanta》1997,44(3):339-347
Alcohol dehydrogenase (ADH) has been immobilized on a nickel hexacyanoferrate modified microband gold electrode surface by a glutaraldehyde/bovine serum albumin (BSA) cross-linking procedure to provide a new amperometric sensor for the assay of ethanol. The resulting enzyme electrode exhibits excellent electrocatalysis for the oxidation of reduced nicotinamide-adenine dinucleotide (NADH). The amperometric determination is based on the electrochemical detection of NADH which is generated in the enzymatic reaction of ethanol with NAD(+) under catalysis of ADH. The influence of various experimental conditions was examined for the determination of the optimum analytical performance. The sensor responds rapidly to ethanol with a detection limit of (5.0 +/- 0.3) x 10(-7) mol 1(-1). The response current increases linearly with ethanol concentration up to 5 mmol 1(-1). The sensor remains relatively stable for about 1 week.  相似文献   

14.
以邻氨基苯酚为起始原料,合成了一新型接枝聚合物--聚邻氨基苯酚接枝聚己内酯(POAP-gPCL).利用核磁共振仪、红外光谱仪、X射线衍射仪、热重分析仪、电化学测试仪和紫外可见光谱仪等分析手段对聚邻氨基苯酚和聚己内酯接枝的聚邻氨基苯酚进行了结构和性能的表征.结果表明,与聚邻氨基苯酚相比,接枝聚合物表现出较好的热稳定性和电...  相似文献   

15.
The method of flow ultramicroscopy is employed to study the effect of the composition and preparation procedure of dilute water-ethanol suspensions of two samples of amorphous silica (fractionated fused quartz and monodisperse amorphous silica) on the kinetics of their coagulation. It is revealed that all suspensions prepared by the addition of silica powders to water-ethanol mixtures with ethanol contents of 96 and 40 vol % are stable with respect to aggregation, as the suspensions prepared by the addition of aliquots of concentrated dispersions of the aforementioned silica samples in 96% ethanol aged for different time periods to water-ethanol mixtures containing 96 vol % ethanol. At a 40-vol % content of ethanol in the mixture, the coagulation whose character (including “superfast” coagulation) substantially depends on the time of aging of initial concentrated silica dispersions occurs. Furthermore, kinetic studies are performed for the coagulation of dilute silica suspensions prepared by the addition of silica powders to water-ethanol solutions containing 40 vol % of ethanol and traces (<1 ppm) of poly(ethoxysilane), poly(acrylic acid), and a supernatant prepared by the centrifugation of concentrated silica dispersion in 96% ethanol aged for more than 3 months. It is found that the addition of aliquots of the aforementioned ethanol solutions to silica suspensions in 40% ethanol, which are initially stable with respect to aggregation, causes their superfast coagulation.  相似文献   

16.
An amperometric sensor using foam nickel electrode as the working electrode for the measurement of ethanol in alkaline solution has been developed. Cyclic voltammetry and chronoamperometry are employed to analyze electrochemical behavior of the electrode. The results show that the oxidation of ethanol is more efficient on the foam nickel electrode than that on the nickel foil electrode. The sensor exhibits a good linear relationship between response current and ethanol concentration in the range of 4 to 1400 ppm with a detection limit of 0.8 ppm. The sensitivity and the response time of the sensor are 4.63 μA/ppm and 10 s respectively. Additionally, the sensor has 60 days shelf-life time at least.  相似文献   

17.
Polymer carriers, poly(hydroxyethyl acrylate(HEA)-methoxy polyethylene glycol methylacrylate (M-23G)) and poly (hydroxyethyl accrylate(HEA)-glycidyl methlacrylate(GMA)) using for immobilization of yeast cells were prepared by radiation polymerization at low temperature. Yeast cells were immobilized through adhesion and multiplication of yeast cells themselves. The ethanol productivity of immobilized yeast cells with these carriers was related to the monomer composition of polymers and the optimum monomer composition was 20% : 10% in poly(HEA-M-23G) and 17%: 6% in poly(HEA-GMA). In this case, the ethanol productivity of immobilized yeast cells was 29mg/ml/h which was about 4 times that of cells in free system. The relationship between the activity of immobilized yeast cells and the water content of polymer carrier were also discussed.  相似文献   

18.
周考文  张鹏  陈魏 《化学学报》2010,68(9):921-925
基于纳米材料上乙醇的催化发光现象,建立了直接测定空气中乙醇浓度的方法.实验发现,乙醇在纳米级钛锆镧(原子比为5∶2∶1)复合氧化物表面有较高的发光强度和较好的选择性,以此为敏感材料可以建立一种高效稳定的乙醇气体传感器,其最佳操作条件为:分析波长620nm,测定温度310℃,载气流速130mL/min.方法的检测限为(3σ)1.3mg/m3,线性范围为2~230mg/m3,相关系数为0.9990,回收率为97.4%~102.7%.对常见共存物的研究发现,甲醛、丙酮、苯、氨、二氧化硫和二氧化碳都不干扰测定,该传感器的连续工作时间可达120h以上.  相似文献   

19.
In this contribution, we report the relationship between molecular structures of polydiacetylene (PDA) vesicles, fabricated by using three monomers, 10,12-tricosadiynoic acid (TCDA), 10,12-pentacosadiynoic acid (PCDA) and N-(2-aminoethyl)pentacosa-10,12-diynamide (AEPCDA), and their color-transition behaviors. The modification of side chain length and head group of the PDA vesicles strongly affects the colorimetric response to temperature, ethanol and pH. A shorter side chain of poly(TCDA) yields weaker inter- and intra-chain dispersion interactions in the bilayers compared to the system of poly(PCDA), which in turn results in a faster color transition upon exposure to all stimuli. A change of head group in poly(AEPCDA) slightly reduces the transition temperature. Interestingly, the colorimetric response of poly(AEPCDA) vesicles to the addition of ethanol is found to occur in a two-step fashion while the response of poly(PCDA) vesicles takes place in a one-step process. The amount of ethanol required for inducing complete color-transition of poly(AEPCDA) vesicles is also much higher, about 87% v/v. The increase of pH to ~9 and ~10 causes a color-transition of poly(TCDA) and poly(PCDA) vesicles, respectively. The poly(AEPCDA) vesicles, on the other hand, change color upon decreasing pH to ~0. The colorimetric response also occurs in a multi-step fashion. These discrepancies are attributed to the architecture of surface layers of poly(AEPCDA), constituting amine and amide groups separated by ethyl linkers.  相似文献   

20.
A fiber-optic sensor for carbon dioxide gas is constructed, without an inner buffer solution, by using a dispersion of fluorescein in poly(ethylene glycol) deposited on the distal end of an optical fiber. Evaporation of the solvent is thus negligible. The response range is 0–28% (v/v) for carbon dioxide, with a detection limit of 0.1%. The response time achieved is 10 s. The membrane (ca. 10 μm thick) is composed of poly(ethylene glycol)s with molecular weights of 200 and 1540 dalton in a 20:80% (w/w) ratio. The best concentration of fluorescein is 5 × 10?7 mol g?1 of poly(ethylene glycol). The response mechanism of the sensor is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号