首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An interesting mode of reactivity of MnO2 nanoparticles modified electrode in the presence of H2O2 is reported. The MnO2 nanoparticles modified electrodes show a bi-direction electrocatalytic ability toward the reduction/oxidation of H2O2. Based on this property, a choline biosensor was fabricated via a direct and facile electrochemical deposition of a biocomposite that was made of chitosan hydrogel, choline oxidase (ChOx) and MnO2 nanoparticles onto a glassy carbon (GC) electrode. The biocomposite is homogeneous and easily prepared and provides a shelter for the enzyme to retain its bioactivity. The results of square wave voltammetry showed that the electrocatalytic reduction currents increased linearly with the increase of choline chloride concentration in the range of 1.0 × 10−5 –2.1 × 10−3 M and no obvious interference from ascorbic acid and uric acid was observed. Good reproducibility and stability were obtained. A possible reaction mechanism was proposed.  相似文献   

2.
This paper describes, for the first time, the development of a simple and highly sensitive chemical sensor based on a new electroactive material, electrogenerated in situ from xanthurenic acid on an electrode modified with MWCNT. The modified electrode shows efficient electrocatalytic oxidation activity towards NADH at an applied potential of 0.1 V vs. Ag/AgCl. The kinetic constant, kkin, for the electrocatalytic oxidation of NADH, evaluated by chronoamperometry and voltammetry using RDE, provided values close to 105 mol?1 L s?1.  相似文献   

3.
Glassy carbon electrode modified with electrodeposited cobalt oxide nanostructure shows an excellent electrocatalytic activity toward insulin oxidation at a wide pH range. Cyclic voltammetry, hydrodynamic amperometry, and flow injection analysis (FIA) were used for insulin determination at a picomolar and higher-concentration range. Amperometric determination of insulin at this modified electrode yielded a calibration curve with the following characteristics; linear range, 100 pM–15 nM; sensitivity of 83.9 nA nM−1 and detection limit 10 pM. FIA yielded the calibration curve with sensitivity and detection limit of 2.0 nA nM−1 and 25 pM, respectively. Furthermore, the RSD of repetitive FIA for 200 pM insulin (n = 13) is 2%. In addition, the interference effect of electroactive existing species (lactic acid, cholesterol, ascorbic acid, uric acid, and glucose) was eliminated by covering the surface of the modified electrode with nafion film. Fast response time, signal stability, high sensitivity, low cost, and ease of preparation are the advantages of the proposed insulin sensor.  相似文献   

4.
《Comptes Rendus Chimie》2014,17(5):465-476
A novel modified multiwall carbon nanotubes paste electrode with sodium dodecyl sulfate as a surfactant (SDS) has been fabricated through an electrochemical oxidation procedure and was used to electrochemically detect dopamine (DA), ascorbic acid (AA), uric acid (UA), and their mixture by cyclic voltammetry (CV) and differential voltammetry (DPV) methods. Several factors affecting the electrocatalytic activity of the hybrid material, such as the effect of pH, of the scan rate and of the concentration were studied. The bare carbon nanotubes paste electrode (BCNTPE) and SDS-modified carbon nanotubes paste electrode (SDSMCNTPE) were characterized using Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive X-ray spectroscopy (EDX). Using the CV procedure, a linear analytical curve was observed in the 1 × 10−6–2.8 × 10−5 M range with a detection limit at 3.3 × 10−7 M in pH 6.5, 0.2 M phosphate buffer solutions (PBS).  相似文献   

5.
Electrocatalytic oxidation of nicotine at multiwalled carbon nanotube (MWCNT)–alumina-coated silica (ACS) nanocomposite modified glassy carbon electrode are described. The sensing performance of the MWCNT–ACS nanocomposite modified glassy carbon electrode for the electrooxidation of nicotine was investigated using cyclic voltammetry and amperometry in 0.1 M phosphate buffer solution (pH 8). The MWCNT–ACS nanocomposite modified glassy carbon electrode exhibited the abilities to decrease the electrooxidation potential, to prevent the electrode surface fouling, and to raise the current responses. The MWCNT–ACS nanocomposite responded rapidly to nicotine with a sensitivity of 1.786 A M?1 cm?2 and a detection limit of 1.42 μM (according to 3σ criterion). A signal almost 180 times more sensitive was obtained at MWCNT–ACS nanocomposite modified glassy carbon electrodes as compared to bare glassy carbon electrode. The nicotine oxidation potential obtained in this study is much lower than that at boron-doped diamond electrodes.  相似文献   

6.
A single-walled carbon nanotube (SWNT) is covalently attached to the interior surface of a conical glass micropore electrode (GME) to create a novel amperometric dopamine sensor (SWNT/NH-GME). The SWNT/NH-GME combines the advantages of excellent transport properties of the cone-shaped micropore with the characteristics of a SWNT, exhibiting a dramatic electrocatalytic effect on the oxidation of dopamine (DA). Cyclic voltammetry and amperometric methods were employed to study the electrochemical behavior of the SWNT/NH-GME. The results showed that the SWNT/NH-GME sensor exhibited an excellent immunity from ascorbic acid interference and was able to measure DA concentrations with a detection limit of 4.2 × 10?7 mol/L (S/N = 3).  相似文献   

7.
The electrochemical regeneration of NADH/NAD+ redox couple has been studied using poly(phenosafranin) (PPS)-modified carbon electrodes to evaluate the formal potential and catalytic rate constant for the oxidation of NADH. The PPS-modified electrodes were prepared by electropolymerization of phenosafranin onto different carbon substrates (glassy carbon (GC) and basal-plane pyrolytic graphite (BPPG)) in different electrolytic solutions. The formal potential was estimated to be ? 0.365 ± 0.002 V vs. SHE at pH 7.0. As for the bare carbon electrodes, the oxidation of NADH at the BPPG electrode was found to be enhanced compared with the GC electrode. For the PPS-modified electrodes, it was found that the electrocatalysis of PPS-modified electrodes for the oxidation of NADH largely depends on the carbon substrate and electrolyte solution employed for their preparation, i.e., the PPS-modified BPPG electrode prepared in 0.2 M NaClO4/acetonitrile solution exhibits an excellent and persistent electrocatalytic property toward NADH oxidation in phosphate buffer solution (pH 7.0) with a diminution of the overpotential of about 740 and 670 mV compared with those at the bare GC electrode and the PPS-modified GC electrode prepared in 0.2 M H2SO4 solution, respectively. A quantitative analysis of the electrocatalytic reaction based on rotating disk voltammetry gave the electrocatalytic reaction rate constants of the order of 103–104 M?1 s? 1 depending on the preparation conditions of the PPS-modified electrodes.  相似文献   

8.
A novel chitosan-carboxylated multiwall carbon nanotube modified glassy carbon electrode (MC/GCE) was developed to investigate the oxidation behavior of nitrite using cyclic voltammetry and differential pulse voltammetry modes. The electrochemical mechanism of the MC/GCE towards nitrite was discussed. The MC/GCE exhibited fast response towards nitrite with a detection limit of 1 × 10−7 mol l−1 and a linear range of 5 × 10−7–1 × 10−4 mol l−1. The possible interference from several common ions was tested. The proposed method was successfully applied in the detection of nitrite in real samples.  相似文献   

9.
A flow electrochemical sensor for trace analysis of lead, using TETRAM-modified graphite felt electrode is reported here. TETRAM ligands are covalently immobilized on the graphite felt by chemical reactions on amino acid linkers, previously attached to the electrode by an electrochemical process. The detection is performed in two steps: the preconcentration of Pb2+ ions by complexation with immobilized TETRAM and the analysis by linear sweep stripping voltammetry. A calibration curve typical of at least two equilibrium processes is obtained. A limit of detection of 2.5 × 10?8 mol L?1 is reached for a total analysis time of 35 min. Interestingly, the flow sensor shows a good selectivity toward lead in presence of Cu2+, Cd2+, Ni2+, Zn2+ and Co2+ ions. This new sensor exhibits improved sensitivity and selectivity compared to the previously reported sensor using cyclam-modified electrode. It is stable after three uses, using strong acidic medium for the regeneration step.  相似文献   

10.
We characterized the electrocatalytic activity of platinum electrode modified by underpotential deposited lead (PtPbupd) for a formic acid (HCOOH) oxidation and investigated the influence on the power performance of direct formic acid fuel cells (DFAFC). Based on the electrochemical analysis using cyclic voltammetry and chronoamperometry, PtPbupd electrode modified by underpotential deposition (UPD) exhibited significantly enhanced catalytic activity for HCOOH oxidation below anodic overpotential of 0.4 V (vs. SCE). Multi-layered PtPbupd electrode structure of Pt/Pbupd/Pt resulted in more stable and enhanced performance using 50% reduced loading of anode catalyst. The performance of multi-layered PtPbupd anode is about 120 mW/cm2 at 0.4 V and it also showed a sustainable cell activity of 0.52 V at an application of constant current loading of 110 mA/cm2.  相似文献   

11.
A thionine modified aligned carbon nanotubes (ACNTs) electrode was fabricated and was used to electrochemically determine nitrite. The thionine modified ACNTs electrode exhibited enhanced electrocatalytic behavior to the oxidation of nitrite. The electrochemical mechanism of the thionine/ACNTs electrode towards the oxidation of nitrite was discussed. The thionine modified ACNTs electrode exhibited fast response towards nitrite with a detection limit of 1.12 × 10−6 mol  L−1 and a linear range of 3 × 10−6 – 5 × 10−4 mol  L−1. The proposed method was successfully applied in the detection of nitrite in real samples.  相似文献   

12.
Trace analysis of thallium at surface modified thick-film graphite electrode with Bi nanopowder has been carried out using square-wave anodic stripping voltammetry (SWASV) technique. The Bi nanopowder electrode exhibited a well-defined response relating to the oxidation of Tl. From the linear relationship between Tl concentration and peak current, the sensitivity of the Bi nanopowder electrode was quantitatively estimated. The detection limit of Tl was determined to be 0.03 μg/L for 1.0 μg/L Tl solution under 10 min accumulation, which is lower than the reported values for a Bi film electrode. Furthermore, it is confirmed that EDTA addition effectively eliminates the Pb and Cd interferences in the course of Tl determination by forming complexes with Pb2+ and Cd2+.  相似文献   

13.
The role of surface oxygen groups on the kinetics of the V(II) oxidation reaction was studied on modified glassy carbon (GC) electrodes by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The reaction was found to be sensitive to the presence of oxygen groups on the electrode surface. Higher O/C ratios determined by X-ray photoelectron spectroscopy (XPS) corresponded to higher reactivities and lower charge transfer resistances measured in a 1 M V(II) electrolyte. The stability of an oxidised GC surface was also investigated in a 1 M V(II) electrolyte by potential holding and cycling experiments. It was found that after holding and cycling to successively more negative potentials up to − 0.8 V/RHE, the electrode surface lost its initial reactivity.  相似文献   

14.
The electrocatalytic oxidation of d-glucosamine (2-amino-2-deoxy-d-glucose) in alkaline and neutral solutions was examined using a carbon felt electrode modified with 2 nm core sized gold nanoparticles (Au2 nm nanoparticles) and a gold plate electrode. The electrocatalytic voltammetric oxidation curves of d-glucosamine were obtained in both solutions. The voltammetric responses for the electrocatalytic oxidation at a Au2 nm nanoparticle-modified electrode in both alkaline and neutral solutions were almost the same to those at a gold plate electrode. The oxidized product was identified to be d-glucosaminic acid (2-amino-2-deoxy- d-gluconic acid) generated by the 2-electron oxidation product of d-glucosamine by electrospray ionization time-of-flight mass spectra (ESI TOF-MS). The HPLC results also indicated that the oxidation product was d-glucosaminic acid.The controlled-potential electrolysis of d-glucosamine was performed at the Au2 nm nanoparticle-modified carbon felt electrodes in both alkaline and neutral solutions. In the alkaline solution, at a potential of −0.2 V, d-glucosaminic acid was formed with a current efficiency of 100%. In the neutral solution, electrolysis at 0.4 V on d-glucosaminic acid was obtained with current efficiencies of 70%.  相似文献   

15.
A novel poly(p-xylenolsulfonephthalein) modified glassy carbon electrode was prepared for the simultaneous determination of ascorbic acid (AA), epinephrine (EP) and uric acid (UA). Cyclic voltammetric, chronoamperometric, and differential pulse voltammetric methods were used to investigate the modified electrode for the electrocatalytic oxidation of EP, AA, and UA in aqueous solutions. The separation of the oxidation peak potentials for AA–EP and EP–UA was about 200 and 130 mV, respectively. The calibration curves obtained for AA, EP, and UA were in the ranges of 10–1343, 2–390, and 0.1–560 μmol L−1, respectively. The detection limits (S/N = 3) were 4, 0.1, and 0.08 μmol L−1 for AA, EP and UA, respectively. The diffusion coefficient and the catalytic rate constant for the oxidation of EP at the modified electrode were calculated as 1.40(±0.10) × 10−4 cm2 s−1 and 1.06 × 103 mol−1 L s−1, respectively. The present method was applied to the determination of EP in pharmaceutical and urine samples, AA in commercially available vitamin C tablet, and EP plus UA in urine samples.  相似文献   

16.
A novel biosensor using poly(3,4-ethylene dioxythiophene) (PEDOT) modified Pt electrode was developed for selective determination of dopamine (DA) in presence of high concentrations of ascorbic acid (AA) and uric acid (UA) with a maximum molar ratio of 1/1000, and 1/100 in the presence of sodium dodecyl sulfate (SDS). SDS forms a monolayer on PEDOT surface with a high density of negatively charged end directed outside the electrode. The electrochemical response of dopamine was improved by SDS due to the enhanced accumulation of protonated dopamine via electrostatic interactions. The common overlapped oxidation peaks of AA, UA and DA can be resolved by using SDS as the DA current signal increases while the corresponding signals for AA and UA are quenched. The use of SDS in the electrochemical determination of dopamine using linear sweep voltammetry at modified electrode PEDOT/Pt resulted in detecting dopamine at relatively lower concentrations. The DA concentration could be measured in the linear range of 0.5 to 25 μmol L? 1 and 30 μmol L? 1 to 0.1 mmol L? 1 with correlation coefficients of 0.998 and 0.993 and detection limits 61 nmol L? 1 and 86 nmol L? 1, respectively. The validity of using this method in the determination of dopamine in human urine was also demonstrated.  相似文献   

17.
The electroreduction of nitrate in synthetic seawater was investigated by cyclic voltammetry (CV) at a bare gold electrode modified by electrodeposited silver nanoparticles (AgNPs). The AgNPs were generated by chronoamperometry using a charge, Q, lower than the theoretical one corresponding to a silver monolayer. In these conditions, a linear range for nitrate determination is obtained from 10·10-6 mol L-1 to 10·10-3 mol L-1. Such a low limit of detection was achieved due to the combination of two chemical reactions coupled with electron transfer.  相似文献   

18.
In this work, we have prepared nano-material modified carbon paste electrode (CPE) for the sensing of an antidepressant, buzepide methiodide (BZP) by incorporating TiO2 nanoparticles in carbon paste matrix. Electrochemical studies indicated that the TiO2 nanoparticles efficiently increased the electron transfer kinetics between drug and the electrode. Compared with the nonmodified CPE, the TiO2-modified CPE greatly enhances the oxidation signal of BZP with negative shift in peak potential. Based on this, we have proposed a sensitive, rapid and convenient electrochemical method for the determination of BZP. Under the optimized conditions, the oxidation peak current of BZP is found to be proportional to its concentration in the range of 5 × 10−8 to 5 × 10−5 M with a detection limit of 8.2 × 10−9 M. Finally, this sensing method was successfully applied for the determination of BZP in human blood serum and urine samples with good recoveries.  相似文献   

19.
The surface nanocrystallization of glassy carbon (GC) electrode was carried out using cyclic voltammetry in anhydrous dimethylformamide containing 0.05 M tetra-n-butylammonium bromine, and carbon nanoparticles with diameter of 10–40 nm were formed on the electrode surface. Comparing with the typical GC electrode, the surface-nanocrystalline GC (SNGC) electrode showed higher electrocatalytic activity for direct electrochemistry of glucose oxidase (GOD) due to higher proportion of edge sites presented on the surface of the SNGC electrode. Because of the surface nanocrystallization of the electrode, a pair of well-defined and quasi-reversible redox peaks of the immobilized GOD was observed for the first time on the GC electrode.  相似文献   

20.
Platinum–cobalt (PtCo) alloy nanoparticles (NPs) are successfully fabricated by ultrasonic-electrodeposition method, using an inclusion complex (IC) film of functionalized cyclodextrin (CD)–ionic liquid (IL) as support. The morphology and composition of the PtCo alloy NPs are characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction, respectively. It is found that they are well-dispersed on the CD–IL surface and exhibit many unique features. The resulting modified glassy carbon electrode shows excellent catalytic activity for glucose oxidation. Under the physiological condition, the oxidation current of glucose is linear to its concentration up to 20 mM with sensitivity of 13.7 μA mM?1 cm?2. In addition, the interference from the oxidation of ascorbic acid and uric acid could be effectively avoided. Therefore, it is promising as a nonenzymatic glucose sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号