首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对一些含硫的镀镍光亮剂电还原反应曾提出过两种反应机理,一种是生成硫酸的机理,一种是脱磺酸(酞)基团的机理.Brook和Crossleyu]认为这类反应是按后一种机理进行的自由基反应,但未对中间产物作出检测.因此目前对反应机理尚无定论.为了阐明还原中间产物与反应本性,本文利用自旅捕集技术与UV光谱研究了对甲基磺欧胺在汞电机上的电还原过程.1实验1.1仪器HDVI-xFD{-x-Y仅组装CV图测量系统;日本JE巳FElxG波谱仪;xJP七ZI新极谱仪阳春应化所)2751G紫外分光光度计.1.2主要试剂苯亚甲基叔丁基氮氧化物(PBN,由中科…  相似文献   

2.
Electron spin resonance (ESR) techniques have been applied to a detailed study of batch and semicontinuous emulsion polymerization of methyl methacrylate; butyl acrylate and styrene have been briefly studied. Quenching of samples from the polymerization reactor followed by ESR analysis are useful, but we have developed continuous flow techniques which are preferable in many cases. ESR techniques can provide valuable information relating to the nature of free radical reactions, the concentration of propagating free radicals, and the kinetic processes in these reactions. Direct ESR analysis is most valuable but is not applicable to all systems. Spin trapping techniques can be useful for systems not accessible by direct analysis.  相似文献   

3.
The highly sensitive technique of spin-probe Electron Spin Resonance (ESR) has been used to study dynamics of carbon nanotubes. The ESR signals were recorded for the nitroxide free radical TEMPO in carbon nanotubes from 5 to 300 K. The onset of the fast dynamics of the probe molecule was indicated by appearance of a narrow triplet at 230 K. The ESR measurements were also done on TEMPO in methanol for the comparative studies in the same temperature range, and in the latter observations, no change in spectra was seen around 230 K. The results indicate the occurrence of a change in the dynamics of carbon nanotubes around this temperature.  相似文献   

4.
The endohedral fullerene epoxide N@C60O was synthesised, isolated by High Performance Liquid Chromatography (HPLC), and characterised by Electron Spin Resonance (ESR). This nitrogen radical displays predominantly axial symmetry characteristics as expected for a monoadduct, evidenced by a zero-field splitting D parameter of 6.6 MHz and an E parameter of 0.5 MHz in powder at 77 K. Photo- and thermally-activated silencing of the nitrogen radical were observed, the latter showing the evolution of a new spin signal during heating at 100 degrees C. We suggest that loss of nitrogen spin is due to coupling with a radical formed by opening of the epoxide ring. This implies that the reaction of C60O with C60 in the solid state proceeds via a radical, rather than ionic, intermediate.  相似文献   

5.
Triplet harvesting is a main challenge in organic light‐emitting devices (OLEDs), because the radiative decay of the triplet is spin‐forbidden. Here, we propose a new kind of OLED, in which an organic open‐shell molecule, (4‐N‐carbazolyl‐2,6‐dichlorophenyl)bis(2,4,6‐trichlorophenyl)methyl (TTM‐1Cz) radical, is used as an emitter, to circumvent the transition problem of triplet. For TTM‐1Cz, there is only one unpaired electron in the highest singly occupied molecular orbital (SOMO). When this electron is excited to the lowest singly unoccupied molecular orbital (SUMO), the SOMO is empty. Thus, transition back of the excited electron to the SOMO is totally spin‐allowed. Spectral analysis showed that electroluminescence of the OLED originated from the electron transition between SUMO and SOMO. The magneto‐electroluminescence measurements revealed that the spin configuration of the excited state of TTM‐1Cz is a doublet. Our results pave a new way to obtain 100 % internal quantum efficiency of OLEDs.  相似文献   

6.
Double Electron-Electron Resonance (DEER) provides information on the spatial distribution of radicals on the length scale of a few nanometres, while Electron Spin Resonance Imaging (ESRI) provides information on a length scale of millimetres with a resolution of about 100 micrometres. Despite the gap between these length scales, results from the two techniques are found to complement and support each other in the characterization of the identity and distribution of nitroxide radicals derived from the Hindered Amine Stabilizer (HAS) Tinuvin 770 in poly(acrylonitrile-butadiene-styrene) (ABS) copolymers. DEER measurements demonstrate that there is no significant formation of biradicals from the bifunctional HAS, and provide the distributions of local radical concentrations. These distributions are poorly resolved for model-free analysis of the DEER data by the Tikhonov regularization; the resolution was significantly improved by utilizing information obtained by ESRI. DEER data can be fitted with only one adjustable parameter, namely the average radical concentration, if 1D and 2D spectral--spatial ESRI results on both the spatial distribution of nitroxides and their distribution between the acrylonitrile--styrene-rich (SAN) and butadiene-rich (B) microphases are considered.  相似文献   

7.
The EPR technique is commonly used for the detection and characterization of paramagnetic centers in chemical science. This method can provides a lot of information, such as identity, structure, dynamics, interaction, orientation, glass transition temperature, adsorption behavior, functionality, phase behavior, nano-inhomogeneities, and conformation of the free-radical portion of the polymer chain. Most polymers intrinsically possess diamagnetic properties, so in order to study polymers with EPR, paramagnetic centers need to be incorporated into the polymer systems. Spin labeling and spin probing are main methods of covalently attaching paramagnetic centers to polymer chains or embedding them in polymer matrices through non-covalent interactions, respectively. Spin labeling and spin probing techniques for polymers and polymer systems (especially with nitroxide radicals) have also been studied, which have a profound impact on polymer science. This review focuses on the continuous wave EPR technique and introduces the recent advances in spin labeled polymers and spin probed polymer systems in EPR research.  相似文献   

8.
Luminescent open-shell organic radicals have recently been regarded as one of the most potential materials in organic light-emitting diodes(OLEDs). Herein, we have synthesized two new organic radicals, namely tris{4-[4-(tert-butyl)phenoxy]-2,6- dichlorophenyl}methane radical(TTM-O) and tris(4-{[4-(tert-butyl)- phenyl]thio}-2,6-dichlorophenyl)methane radical(TTM-S), by the substitution of chalcogen atom elements at the para position of conventional tris(2,4,6-trichlorophenyl)methyl(TTM) radical moiety. Interestingly, both TTM-O and TTM-S exhibited significantly enhanced photostability compared with the unsubstituted TTM radical parent. Moreover, the chalcogen atom also had a crucial impact on the photoluminescence quantum yield(PLQY) of the radicals, i.e., the PLQY of TTM-S was greatly enhanced compared to TTM radical while TTM-O was nearly non-emissive. Particularly, TTM-S showed intense PLQY of 37.54% and 185-fold longer photostability than that in cyclohexane solution of TTM.  相似文献   

9.
The 4-hydroxy-5,5-dimethyl-2-trifluoromethylpyrroline-1-oxide (FDMPO) spin trap is very attractive for spin trapping studies due to its high stability and high reaction rates with various free radicals. However, the identification of FDMPO radical adducts is a challenging task since they have very comparable Electron Spin Resonance (ESR) spectra. Here we propose a new method for the analysis and interpretation of the ESR spectra of FDMPO radical adducts. Thus, overlapping ESR spectra were analyzed using computer simulations. As a result, the N- and F-hyperfine splitting constants were obtained. Furthermore, an artificial neural network (ANN) was adopted to identify radical adducts formed during various processes (e.g., Fenton reaction, cleavage of peracetic acid over MnO(2), etc.). The ANN was effective on both "known" FDMPO radical adducts measured in slightly different solvents and not a priori "known" FDMPO radical adducts. Finally, the N- and F-hyperfine splitting constants of ·OH, ·CH(3), ·CH(2)OH, and CH(3)(C═O)O(·) radical adducts of FDMPO were calculated using density functional theory (DFT) at the B3LYP/6-31G(d,p)//B3LYP/6-31G++//B3LYP/EPR-II level of theory to confirm the experimental data.  相似文献   

10.
A photochemical precursor to a pendant conjugated polyradical has been synthesized, poly[3,5-di-tert-butyl-4-[(2,4,6-tri-tert-butylphenyl)oxalato]phenylacetylene], 3 . Irradiation of 3 at 77 K in the solid state at < 300 nm yielded poly(3–5-di-tert-butyl-2-oxyphenyl acetylene), 2 , with 30–40% of the expected number of radical spins. Spin yields on the surface of solid samples appears to be considerably higher. Electron spin resonance experiments showed no evidence of cooperative exchange interaction between the pendant spins. Computational modeling indicated that a major reason for the failure of this and other polyphenylacetylenes to show ferromagnetic exchange between spins is the substantial twisting of the polyacetylene backbone required by steric interactions, leading to deconjugation and a loss of exchange interaction between pendant radicals along the chain. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2167–2176, 1997  相似文献   

11.
正十六烷光催化降解的羟自由基测定及其反应速率常数   总被引:3,自引:0,他引:3  
以5,5-二甲基-1-吡咯啉-N-氧化物(DMPO)为自旋捕集剂,采用电子顺磁共振(EPR)方法,在光照的TiO2磷酸缓冲水溶液(pH=7.4)中检测到羟自由基的自旋加合物(DMPO-OH),其强度随光照时间增加而加大.在1min时达到稳态,此时DMPO-OH的产生和猝灭达到平衡.根据已知的羟自由基(HO·)与DMPO结合的速率常数k0,推导出纳米级TiO2光催化生成羟自由基氧化正十六烷(n-C16H34)的速率常数k=5.0×1011mol-1·L·s-1.  相似文献   

12.
Vegetable oils are important constituents of a healthy diet. Still, unsaturated fatty acids present in vegetable oils are susceptible to oxidation, which leads to undesirable changes in sensory, chemical and nutritional properties of oils. To prevent this problem, antioxidants are applied with herbs and spices being one of the most important sources of natural antioxidants. Electron paramagnetic resonance spectroscopy (EPR) can be used to detect free radicals, which are the short-lived intermediates of lipid oxidation, and to monitor changes in oxidation susceptibility. In this study, the ESR spin trapping technique was used as a potential method for the evaluation of the resistance to free radical formation in rapeseed and sunflower oils enriched with herb extracts. The antioxidant effect of herb extracts on vegetable oils was also investigated by measuring their ability to scavenge DPPH free radical using EPR spectroscopy. The herb extracts generally improved the radical scavenging properties of sunflower and rapeseed oils but their influence on the onset of rapid lipid oxidation as measured by spin-trapping EPR depended on the type of oil and on the extract concentration.  相似文献   

13.
Electron and magnetic resonance parameters of the protonated H2NO radical have been calculated by the INDO and CNDO/SP methods for different models. Calculated changes of magnetic resonance parameters on protonation are consistent with experiment. The most appropriate structure has been found to be one in which the proton is in the plane of the radical with r(O?.H+) = 1.05 A.Calculated signns of the proton spin density for the models concerned are opposite to those of the spin density on the proton of a ligand involved in the hydrogen bonding for analogous models of hydrogen bond systems formed by the nitroxide radical.In the case of the protonated radical, taking into account the interaction with a solvent molecule leads to more reasonable results for large O?.H+ distances.  相似文献   

14.
A family of triads composed of C(60) attached by a rigid spacer to two identical TTF moieties has been synthesized, and some of the isomers have been isolated and characterized by UV-vis spectroscopy, LDI-TOF-MS, and HMBC NMR spectroscopy. AM1 semiempirical calculations of the dipolar moments and the heats of formation of the different isomers have been carried out in order to verify their assignments. Oxidation and reduction of the triads affords the derived radical ion systems, TTF(+*)-C(60)-TTF(+*) and TTF-C(60)(-*)-TTF, which were studied by EPR spectroscopy. Spin density distributions of these radical cations and radical anions show that the unpaired electron is located mainly on the TTF and fullerene moieties, respectively. However, while the EPR signals obtained from the radical cations are very similar for all the isomers, the structured signals observed for the radical anions arising from the coupling of the unpaired electron with the hydrogen atoms of the methylene bridges in the spacer show that there is a strong influence of the isomerism on the spin distribution. Importantly, the theoretical calculations of the spin density distributions of the radical anions fit well with the experimental EPR results.  相似文献   

15.
This paper marks the first reported detection of radical cations by Electrospray-Ionization Mass Spectrometry (ESI-MS). Electron Spin Resonance (ESR) measurements have proven that the detected radical cation existed already in solution and has not been generated by the electrospray ionization technique. However, we observed that the radical cation can be generated by changes in the ionization conditions. A molar mixture of 2-amino-5,6,7,8-tetrahydro-5-methylpterin-4(4H)-one dihydrochloride ( = 5,6,7,8-tetrahydro-N(5)-methylpterin-2 HCl, N(5)-MTHP-2 HCl), and tris(pentane-2,4-dionato)iron(III) in MeCN at pH 2–3 leads to the formation of a [bis(pentane-2,4-dionato)(2-amino-5,6,7,8-tetrahydro-5-methylpteridin-4 (4H)-one)]iron complex ( = [bis(pentane-2,4-dionato) (5,6,7,8-tetrahydro-N(5)-methylpteridin)]iron complex) which can be detected by ESI-MS. The results suggest that this complex might be an FeII radical cation, which could possibly be a suitable model complex for the active center of the phenylalanine hydroxylase. In the same solution, the stable radical cation of N(5)-MTHP is identified by ESI-MS and ESR.  相似文献   

16.
Peroxidation is an important process both in chemistry and biology, and peroxyl radicals play a crucial role in various pathological situations involving lipid and protein peroxidation. A few secondary and tertiary peroxyl radicals can be detected directly by Electron Spin Resonance (ESR). However, primary and secondary alkylperoxyl radicals have extremely short lifetimes and their direct observation is impossible in biological samples. DMPO has been used to trap alkylperoxyl radicals generated in biological systems and the characterization of DMPO-alkylperoxyl spin adducts has been claimed by different authors. However, it was then clearly shown that all the assignments made previously to DMPO-OOR adducts were actually due to DMPO-OR adducts. We have investigated the potential of DEPMPO to characterize the formation of alkylperoxyl radicals in biological milieu. Various DEPMPO-OOR (R = Me, primary or secondary alkyl group) spin adducts were unambiguously characterized and the formation of DEPMPO-OOCH(3) was clearly established during the reaction of tert-butylhydroperoxide with chloroperoxidase and cytochrome c.  相似文献   

17.
极化中子衍射方法常用于研究含未配对电子化合物中电子自旋密度的分布.分子中电子自旋密度分布从一个独特的角度反映化合物的磁性质.本文介绍极化中子衍射方法的背景知识和基本原理.包括中子源、中子和X射线衍射、极化中子衍射,以及一些常用的实验数据处理方法.选用几个实例总结了用极化中子衍射方法得到的电子自旋密度分布在无机和有机化学中的应用.通过单分子磁体[Fe8O2(OH)12(tacn)6]^8+和氰基桥联化合物K2[Mn(H2O)2]3[Mo(CN)7]2·6H2O,说明如何用该方法研究金属原子间的磁相互作用;并通过Ru(acac)3这个只含一个未配对电子的化合物来说明如何获得化合物中金属和配体上小的自旋密度;最后介绍了该方法在nitronylnitroxide自由基研究中的应用.  相似文献   

18.
Spin dynamics in radical ion pairs formed under ionizing irradiation of n-hexane solutions of two branched alkanes 2,3-dimethylbutane and 2,2,4-trimethylpentane has been studied by the method of time-resolved magnetic field effect in recombination fluorescence. Experimental curves of the magnetic field effect are satisfactorily described by assuming that the spin dynamics is determined by the hyperfine interactions in the radical cation (RC) of branched alkane under study with hyperfine coupling (HFC) constants averaged by internal rotations of RC fragments. The HFC constants determined from the magnetic field effect curves are close to those estimated within DFT B3LYP approach. Analysis of the results indicates that at room temperature the lifetimes of the RC of the studied branched alkanes amount to, at least, tens of nanoseconds.  相似文献   

19.
Spin density distributions in molecular compounds containing unpaired electrons have been studied by polarized neutron diffraction (PND). The spin density distributions provide a unique perspective of the magnetic properties of the compounds. The background and fundamentals of polarized neutron diffraction are summarized in this review, followed by examples of applications in inorganic and organic chemistry. Spin densities in several compounds that are obtained by polarized neutron diffraction are highlighted. Spin densities in single molecular magnet [Fe8O2(OH)12(tacn)6]8+ and cyano-bridged K2[Mn(H2O)2]3[Mo(CN)7]2·6H2O demonstrate how to obtain magnetic interaction in the complexes by PND. PND studies of Ru(acac)3, containing one single unpaired electron, show small spin densities in this complex. Finally the use of PND in studying nitronyl nitroxide radicals is given. Our goal in this review is to illustrate how PND functions and how it serves as a sensitive tool in directly probing spin density in molecules.  相似文献   

20.
The study of the influence of free radicals in the biological process depends primarily on the capacity to detect these reactive species. In this work we have studied the application of mass spectrometry to the identification of hydroxyl radical species. The detection and identification by collisional activation mass-analyzed ion kinetic energy spectrometry (CA-MIKES) of a spin adduct of DMPO with the hydroxyl radical [(DMPO + O) + H]+ (m/z 130) has demonstrated that mass spectrometry can be a powerful tool in the detection and identification of spin adducts of DMPO with hydroxyl radical species. We were also able to detect the capture of secondary free radicals using ethanol by detecting and identifying the corresponding adduct [(DMPO + ethanol) + H]+. Other spin adducts have also been detected and identified. We consider that the use of mass spectrometry is a relevant technique for the detection of free hydroxyl radicals, especially in complex mixtures, since mass spectrometry is able to discriminate these adducts in such situations. Moreover, using this approach, it was possible to identify new spin adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号