首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some oxide catalysts, such as RuO2/Ti, IrO2/Ti and IrM(M: Ru, Mo, W, V)Ox/Ti binary oxide electrodes, were prepared by using a dip-coating method on a Ti substrate. Their catalytic behavior for the oxygen reduction reaction (ORR) was evaluated by cyclic voltammetry in 0.5 M H2SO4 at 60 °C. These catalysts were found to exhibit considerably high activity, and the most active one among them was Ir0.6V0.4O2/Ti prepared at 450 °C, showing onset potential for the ORR at about 0.86 V–0.90 (vs RHE).  相似文献   

2.
In this study, a catalyst based on a novel ternary non-noble metal chalcogenide, W–Co–Se, was synthesized for the oxygen reduction reaction (ORR) in acidic medium. The non-noble metal chalcogenide catalyst was electrochemically stable in the potential range of 0.05–0.8 V versus NHE in 0.5 M H2SO4 aqueous solution. This catalyst demonstrated significant catalytic activity towards the ORR, showing the ORR onset potential at 0.755 V versus NHE in 0.5 M H2SO4 at 25 °C. Such high activity might be attributed to the electronic structure of non-noble metals modified by chalcogen.  相似文献   

3.
Sulfur doped reduced graphene oxide (S-rGO) is investigated for catalytic activity towards the oxygen reduction reaction (ORR) in acidic and alkaline electrolytes. X-ray photoelectron spectroscopy shows that sulfur in S-rGO is predominantly integrated as thiophene motifs within graphene sheets. The overall sulfur content is determined to be approximately 2.2 at.% (elemental analysis). The catalytic activity of S-rGO towards the ORR is investigated by both rotating disc electrode (RDE) and polymer electrolyte fuel cell (PEFC) measurements. RDE measurements reveal onset potentials of 0.3 V and 0.74 V (vs. RHE) in acidic and alkaline electrolyte, respectively. In a solid electrolyte fuel cell with S-rGO as cathode material, this is reflected in an open circuit voltage of 0.37 V and 0.78 V and a maximum power density of 1.19 mW/cm2 and 2.38 mW/cm2 in acidic and alkaline polymer electrolyte, respectively. This is the first report investigating the catalytic activity of a sulfur doped carbon material in both acidic and alkaline liquid electrolyte, as well as in both proton and anion exchange polymer electrolyte fuel cells.  相似文献   

4.
Cyanamide was used in the preparation series of metal–nitrogen–carbon (M–N–C) oxygen reduction catalysts. The best catalyst, treated at 1050 °C, shows good performance versus previously reported non-precious metal catalysts with an OCV ~ 1.0 V and a current density of 105 mA/cm2 (iR-corrected) at 0.80 V in H2/O2 fuel cell testing (catalyst loading: 4 mg cm? 2). Although nitrogen content has been previously correlated positively with ORR activity, no such trend is observed here for any nitrogen type. The combined effects of nitrogen and sulfur incorporation into the carbon may account for the high activity of the 1050 °C catalyst.  相似文献   

5.
A systematic study on the electrocatalytic properties of Pt nanoparticles supported on nitrobenzene-modified graphene (Pt-NB/G) as catalyst for oxygen reduction reaction (ORR) in alkaline solution was performed. Graphene nanosheets were spontaneously grafted with nitrophenyl groups using 4-nitrobenzenediazonium salt. The electrocatalytic activity towards the ORR and stability of the prepared catalysts in 0.1 M KOH solution have been studied and compared with that of the commercial Pt/C catalyst. The results obtained show that the NB-modified graphene nanosheets can be good Pt catalyst support with high stability and excellent electrocatalytic properties. The specific activity of Pt-NB/G for O2 reduction was 0.184 mA cm−2, which is very close to that obtained for commercial 20 wt% Pt/C catalyst (0.214 mA cm−2) at 0.9 V vs. RHE. The Pt-NB/G hybrid material promotes a four-electron reduction of oxygen and can be used as a promising cathode catalyst in alkaline fuel cells.  相似文献   

6.
《Comptes Rendus Chimie》2015,18(11):1205-1210
Nickel–aluminium and magnesium–aluminium hydrotalcites were prepared by co-precipitation and subsequently submitted to calcination. The mixed oxides obtained from the thermal decomposition of the synthesized materials were characterized by XRD, H2-TPR, N2 sorption and elemental analysis and subsequently tested in the reaction of methane dry reforming (DRM) in the presence of excess of methane (CH4/CO2/Ar = 2/1/7). DMR in the presence of the nickel-containing hydrotalcite-derived material showed CH4 and CO2 conversions of ca. 50% at 550 °C. The high values of the H2/CO molar ratio indicate that at 550 °C methane decomposition was strongly influencing the DRM process. The sample reduced at 900 °C showed better catalytic performance than the sample activated at 550 °C. The catalytic performance in isothermal conditions from 550 °C to 750 °C was also determined.  相似文献   

7.
M–Ti/carbon black electrocatalysts (M: Mn, Fe, Co, Ni, Cu, Mo) were prepared by the polymerized complex (PC) method and subsequent nitridation under ammonia flow, and were investigated as cathodes for the oxygen reduction reaction (ORR) in 0.1 M H2SO4 aq. Among the metals investigated, Co and Fe gave high onset potentials of 0.86 and 0.87 V vs. RHE, respectively. In comparison with the Co-only catalyst, the Co–Ti catalyst showed higher current, reflecting high density of Co-related active sites. The presence of Ti was also essential for the electrode stability under severe acidic and oxidizing conditions.  相似文献   

8.
Oxygen reduction reaction (ORR) has been studied on the low index planes of Pd modified with a monolayer of Pt (Pt/Pd(hkl)) in 0.1 M HClO4 with the use of hanging meniscus rotating disk electrode. The activity for ORR on bare Pd(hkl) electrode depends on the surface structure strongly, however, voltammograms of ORR on Pt/Pd(hkl) electrodes do not depend on the crystal orientation. The specific activities of Pt/Pd(hkl) electrodes at 0.90 V (RHE) are higher than that on Pt(1 1 0) which has the highest activity for ORR in the low index planes of Pt. The mass activity on Pt/Pd(hkl) electrode is 7 times as high as a commercial Pt/C catalyst.  相似文献   

9.
O2 concentration near Pt surface during oxygen reduction reaction (ORR) in 0.1 M HClO4 has been monitored by rotating ring-disk electrodes system. At 0.8 V < E < 1.0 V (vs. RHE), O2 concentration near Pt surface increases with potential accompanying with the decrease of ORR current at the disk electrode; O2 concentration in the negative-going scan is larger than that at the same potential in the positive-going scan, while ORR current shows the opposite trend at ω > 400 rpm. At E > 0.8 V accumulation of Oad|OHad at Pt disk electrode with ORR time is evident, revealing that Oad|OHad formation rate is faster than that for the removal of OHad to H2O under such conditions. At relatively lower rotation speed and faster scan rate, the cathodic current during ORR in the negative-going scan can be larger than that in the positive-going scan with a current peak at ca. 0.8 V, which is attributed to the superimposition of ORR current increase due to change of O2 concentration near the surface and the additional reduction of Oad|OHad formed from decomposed O2 at higher potentials.  相似文献   

10.
A new procedure has been successfully developed by which PtNx/C is synthesized to enhance methanol tolerance while maintaining a high catalytic activity for the oxygen-reduction reaction (ORR). The nitrogen-modified Pt surface, which is prepared using a chelating agent followed by heat treatment, exhibits considerable selectivity toward the ORR in the presence of methanol. The high methanol tolerance could be attributed to the suppression of methanol adsorption resulting from the modification of the Pt surface with nitrogen. A direct methanol fuel-cell (DMFC) test showed that a power density of up to 120 m W cm−2 was generated when PtNx/C was used as the cathode catalyst (1 mg cm−2) in 6 M methanol and oxygen at 70 °C.  相似文献   

11.
The PdFe nanorods (PdFe-NRs) with tunable length were synthesized by an organic phase reaction of [Pd(acac)2] and thermal decomposition of [Fe(CO)5] in a mixture of oleyamine and octadecene at 160 °C. They show a better proton exchange membrane fuel cell (PEMFC) performance than commercial Pt/C in working voltage region of 0.80–0.65 V, due to their high intrinsic activity to oxygen reduction reaction (ORR), reduced cell inner resistance, and improved mass transport.  相似文献   

12.
Oxygen reduction reaction (ORR) in alkaline medium at iron (II) tetrakis (diaquaplatinum) octacarboxyphthalocyanine (PtFeOCPc) catalyst supported on multi-walled carbon nanotubes (MWCNTs) has been described. The ORR followed the direct 4-electron transfer process, with a very low onset potential (approximately zero volts vs. Ag|AgCl, saturated KCl) and at a kinetic rate constant, 2.78 × 10? 2 cm s? 1. The results clearly showed that the ORR activity at the MWCNT-PtFeOCPc platform is comparable or even better than recent reports with other electrocatalysts, thus a promising catalytic platform for cathodic process in fuel cell device.  相似文献   

13.
In this communication, we report a novel CoTETA/C catalyst for the oxygen reduction reaction (ORR) which was prepared from a carbon-supported cobalt triethylenetetramine chelate, followed by heat treatment in an inert atmosphere. Electrochemical performances were measured using rotating disk electrode (RDE) technique and a PEM fuel cell test station. For a H2–O2 fuel cell system, the maximum output power density reached 162 mW cm?2 at 25 °C with non-humidified reaction gases. We found a nanometallic face-centered cubic (fcc) α-Co phase embedded in the graphitic carbon after pyrolysis, based on X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) measurements. These results indicated that CoTETA/C is a promising catalyst for the ORR.  相似文献   

14.
《Comptes Rendus Chimie》2014,17(7-8):785-789
In the context of fuel upgrading by selective ring opening of naphthenes, we have investigated the catalytic conversion of cyclopentane in large hydrogen excess over iridium and platinum single-crystal surfaces. Both (111) and (112) orientations have been considered. The catalytic tests have been performed at 1 kPa and 25–600 °C using a recently developed surface reactor equipped with laser heating and online gas chromatography. Only cyclopentene and C1–C4 cracking products are formed on iridium, while platinum additionally catalyzes the formation of pentane around 200 °C, which dehydrogenates to pentene at 250 °C. Noticeably, on both metals, the surface steps prevent hydrocarbon cracking (up to 400 °C) at the benefit of dehydrogenation. In all cases, a carbon overlayer is formed on the surfaces in the course of the reaction.  相似文献   

15.
Solid carbon was investigated as the fuel for an intermediate-temperature solid oxide fuel cell (IT-SOFC). An innovative, indirect operating method involving internal catalytic gasification of carbon to gaseous carbon monoxide via the reverse Boudouard reaction (C(s) + CO2(g)  2CO(g)) was proposed. The carbon gasification reaction rate was greatly enhanced by adopting FemOn–MxO (M = Li, K, Ca) as a catalyst. A peak power density of ~297 mW cm?2 was achieved at 850 °C for an anode-supported SOFC with scandium-stabilized zirconia electrolyte and a La0.8Sr0.2MnO3 cathode by applying a catalyst-loaded, activated carbon as fuel. This peak power density was only modestly lower than that obtained using gaseous hydrogen as the fuel.  相似文献   

16.
The effect of calcination temperatures on dry reforming catalysts supported on high surface area alumina Ni/γ-Al2O3 (SA-6175) was studied experimentally. In this study, the prepared catalyst was tested in a micro tubular reactor using temperature ranges of 500, 600, 700 and 800 °C at atmospheric pressure, using a total flow rate of 33 ml/min consisting of 3 ml/min of N2, 15 ml/min of CO2 and 15 ml/min of CH4. The calcination was carried out in the range of 500–900 °C. The catalyst is activated inside the reactor at 500–800 °C using hydrogen gas. It was observed that calcination enhances catalyst activity which increases as calcination and reaction temperatures were increased. The highest conversion was obtained at 800 °C reaction temperature by using catalyst calcined at 900 °C and activation at 700 °C. The catalyst characterization conducted supported the observed experimental results.  相似文献   

17.
Vanadium oxide catalysts supported on activated carbon (V/AC) with V loadings ranging from 1 to 20 wt.% were prepared by a wet-impregnation method. Various physicochemical characterization techniques, including nitrogen physisorption, X-ray diffraction (XRD), Raman spectroscopy, X-ray absorption (XANES and EXAFS), X-ray photoelectron spectroscopy (XPS), and electron spin resonance (ESR), were employed to understand the nature of vanadium species on activated carbon. The results revealed that vanadium oxide mainly existed in a highly dispersed state for 10 wt.% or less vanadium loadings; a large amount of vanadium resulted in aggregated microcrystalline phase. Vanadium species on activated carbon surface showed a similar local coordination structure to that of NH4VO3 with a distorted tetrahedral symmetry at low vanadium loadings, whereas octahedral coordination was dominant at high vanadium loadings (>10 wt.%). All V/AC samples showed V5+ as the major oxidation state. Nevertheless, V4+ centered in a distorted tetrahedral symmetry could be detected at a vanadium loading greater than 4 wt.%. The catalytic activity for the benzyl alcohol oxidation largely depended on the dispersion, oxidation state, and local coordination of vanadium oxides on activated carbon. Highly dispersed vanadium (5+) species with a distorted tetrahedral coordination were postulated to account for the excellent catalytic performances of V/AC catalysts (TOF = 39.1 h?1).  相似文献   

18.
《Comptes Rendus Chimie》2015,18(3):270-276
The use of oxygen in combination with carbon dioxide to afford the direct conversion of alkenes into cyclic carbonates could help to promote the greenhouse gas while minimizing the impact of the oxidation reaction on the environment. In this work, we focused, for the first time, on the association of two catalytic systems individually efficient for the epoxidation of styrene (Mn(salen)/O2 bubbling/isobutyraldehyde at 80 °C) and the cyclocarbonatation of styrene oxide (choline chloride/CO2 at 15 bar and 120 °C). First, the feasibility of the cyclocarbonatation reaction, starting from the non-isolated epoxide, has been proven as styrene carbonate was formed with a 24% yield. The objective was, then, to determine the best conditions allowing the overall transformation in a common solvent. Taking into account the differences in optimal temperatures and kinetics of the two individual steps, it was decided to vary the temperature during the reaction [first 80 °C (3 h) and 120 °C (23 h)]. Under these conditions, styrene was converted into the epoxide but, unfortunately, styrene carbonate formation could not be demonstrated. Blank experiments have clearly shown that isobutyraldehyde, which is essential to the first step, must be completely consumed before the temperature rise. Otherwise, autoxidation of the aldehyde in the presence of styrene oxide at 120 °C leads to other products than styrene carbonate.  相似文献   

19.
Carbon molecular sieves (CMS) have been prepared from locally available palm shell of Tenera type by a thermal treatment technique involving carbonization followed by steam activation and benzene deposition technique. Carbonization of the dried palm shells was done at 900 °C for duration of 1 h followed by steam activation at 830 °C for 30–420 min to achieve activated carbons with different degree of burn-offs. The highest micropore volume of activated carbon obtained at 53.2% burn-off was found suitable to be used as a precursor for CMS production. Subsequent benzene deposition onto activated samples at temperature range from 600 to 900 °C for various benzene concentrations have resulted in a series of CMS with different kinetic selectivities. The molecular sieving behaviour of the CMS products was assessed by kinetic adsorption isotherms of O2, N2, CO2 and CH4 at room temperature.  相似文献   

20.
We show a great possibility of mediated enzymatic bioelectrocatalysis in the formate oxidation and the carbon dioxide (CO2) reduction at high current densities and low overpotentials. Tungsten-containing formate dehydrogenase (FoDH1) from Methylobacterium extorquens AM1 was used as a catalyst and immobilized on a Ketjen Black-modified electrode. For the formate oxidation, a high limiting current density (jlim) of ca. 24 mA cm 2 was realized with a half wave potential (E1/2) of only 0.12 V more positive than the formal potential of the formate/CO2 couple (E°′CO2) at 30 °C in the presence of methyl viologen (MV2 +) as a mediator, and jlim reached ca. 145 mA cm 2 at 60 °C. Even when a viologen-functionalized polymer was co-immobilized with FoDH1 on the porous electrode, jlim of ca. 30 mA cm 2 was attained at 60 °C with E1/2 = E°′CO2 + 0.13 V. On the other hand, the CO2 reduction was also realized with jlim  15 mA cm 2 and E1/2 = E°′CO2  0.04 V at pH 6.6 and 60 °C in the presence of MV2 +.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号