首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work describes the development of a new strategy to photoelectrochemical detection of L-Dopa at low potential based on oxygen reduction on TiO2 sensitized with iron phthalocyanine (FePc/TiO2). The FePc/TiO2 composite shows a photocurrent 10-fold higher than that of pure TiO2 nanoparticles and it was 4-fold higher than that of FePc exploiting visible light. The band gaps of pure TiO2 nanoparticles, FePc and FePc/TiO2, calculated according to the Kubelka–Munk equation, were 3.22 eV, 3.11 eV and 2.82 eV, respectively. The FePc/TiO2 composite showed a low charge transfer resistance in comparison to the photoelectrode modified with FePc or TiO2. Under optimized conditions, the photoelectrochemical sensor shows a linear response range from 20 up to 190 μmol L 1 with a sensitivity of 31.8 μA L mmol 1 and limit of detection of 1.5 μmol L 1 for the detection of L-Dopa.  相似文献   

2.
Two pure hydrated lead borates, Pb(BO2)2·H2O and PbB4O7·4H2O, have been characterized by XRD, FT-IR, DTA-TG techniques and chemical analysis. The molar enthalpies of solution of Pb(BO2)2·H2O and PbB4O7·4H2O in 1 mol dm?3 HNO3(aq) were measured to be (?35.00 ± 0.18) kJ mol?1 and (35.37 ± 0.14) kJ mol?1, respectively. The molar enthalpy of solution of H3BO3(s) in 1 mol dm?3 HNO3(aq) was measured to be (21.19 ± 0.18) kJ mol?1. The molar enthalpy of solution of PbO(s) in (HNO3 + H3BO3)(aq) was measured to be ?(61.84 ± 0.10) kJ mol?1. From these data and with incorporation of the enthalpies of formation of PbO(s), H3BO3(s) and H2O(l), the standard molar enthalpies of formation of ?(1820.5 ± 1.8) kJ mol?1 for Pb(BO2)2·H2O and ?(4038.1 ± 3.4) kJ mol?1 for PbB4O7·4H2O were obtained on the basis of the appropriate thermochemical cycles.  相似文献   

3.
The low-temperature heat capacity of NiAl2O4 and CoAl2O4 was measured between T = (4 and 400) K and thermodynamic functions were derived from the results. The measured heat-capacity curves show sharp anomalies peaking at around T = 7.5 K for NiAl2O4 and at T = 9 K for CoAl2O4. The exact cause of these anomalies is unknown. From our results, we suggest a standard entropy for NiAl2O4 at T = 298.15 K of (97.1 ± 0.2) J · mol?1 · K?1 and for CoAl2O4 of (100.3 ± 0.2) J · mol?1 · K?1.  相似文献   

4.
The mobility of uranium under oxidizing conditions can only be modeled if the thermodynamic stabilities of the secondary uranyl minerals are known. Toward this end, we synthesized metaschoepite (UO3(H2O)2), becquerelite (Ca(UO2)6O4(OH)6(H2O)8), compreignacite (K2(UO2)6O4(OH)6(H2O)7), sodium compreignacite (Na2(UO2)6O4(OH)6(H2O)7), and clarkeite (Na(UO2)O(OH)) and performed solubility measurements from both undersaturation and supersaturation under controlled-pH conditions. The solubility measurements rigorously constrain the values of the solubility products for these synthetic phases, and consequently the standard-state Gibbs free energies of formation of the phases. The calculated lg solubility product values (lg Ksp), with associated 1σ uncertainties, for metaschoepite, becquerelite, compreignacite, sodium compreignacite, and clarkeite are (5.6 ?0.2/+0.1), (40.5 ?1.4/+0.2), (35.8 ?0.5/+0.3), (39.4 ?1.1/+0.7), and (9.4 ?0.9/+0.6), respectively. The standard-state Gibbs free energies of formation, with their 2σ uncertainties, for these same phases are (?1632.2 ± 7.4) kJ · mol?1, (?10305.6 ± 26.5) kJ · mol?1, (?10107.3 ± 21.8) kJ · mol?1, (?10045.6 ±24.5) kJ · mol?1, and (?1635.1 ± 23.4) kJ · mol?1, respectively. Combining our data with previously measured standard-state enthalpies of formation for metaschoepite, becquerelite, sodium compreignacite, and clarkeite yields calculated standard-state entropies of formation, with associated 2σ uncertainties, of (?532.5 ± 8.1) J · mol?1 · K?1, (?3634.5 ± 29.7) J · mol?1 · K?1, ( ?2987.6 ± 28.5) J · mol?1 · K?1, and (?300.5 ± 23.9) J · mol?1 · K?1, respectively. The measurements and associated calculated thermodynamic properties from this study not only describe the stability and solubility at T = 298 K, but also can be used in predictions of uranium mobility through extrapolation of these properties to temperatures and pressures of geologic and environmental interest.  相似文献   

5.
A novel flow-injection chemiluminescence (CL) method for the determination of dihydralazine sulfate (DHZS) is described. The method is based on the reaction of luminol and diperiodatocuprate (K2[Cu(H2IO6)(OH)2], DPC) in alkaline medium to emit CL, which is greatly enhanced by DHZS. The possible CL mechanism was first proposed based on the kinetic characteristic, CL spectrum and UV spectra. The optimum condition for the CL reaction was in detail studied using flow-injection system. The experiments indicated that under optimum condition, the CL intensity was linearly related to the concentration of DHZS in the range of 7.0 × 10?9 to 8.6 × 10?7 g mL?1 with a detection limit (3σ) of 2.1 × 10?9 g mL?1. The proposed method had good reproducibility with the relative standard deviation 3.1% (n = 7) for 5.2 × 10?8 g mL?1 of DHZS. This method has the advantages of simple operation, fast response and high sensitivity. The special advantage of the system is that very low concentration of luminol can react with DPC catalyzed by DHZS to get excellent experiment results. And CL cannot be observed nearly when luminol with same concentration reacts with other oxidants, so luminol–DPC system has higher selectivity than other luminol CL systems. The method has been successfully applied to determine DHZS in serum.  相似文献   

6.
Thermodynamic properties of the high-stability intermetallic compound nickel aluminide, NiAl, have been determined from mass-spectrometric, weight-loss effusion, and calorimetric measurements, using samples from a single preparation with a composition determined to be Ni0.986Al1.014. Per mole of NiAl molecules, the specific heat capacity at room temperature of 298 K is 48.54 J · K?1 · mol?1, with a linear temperature dependence of +0.0104 J · K?2 · mol?1. At the same temperature, the enthalpy of formation is ?133.7 kJ · mol?1, the entropy is about 53.8 J · K?1 · mol?1 and the enthalpy difference between room temperature and absolute zero is 7.97 kJ · mol?1. The Gibbs free-energy is ?130.2 kJ · mol?1 at T = 298 K, with a linear temperature dependence of +5.04 J · K?1 · mol?1. The Debye temperature is 452 K, while the electronic density-of-states at the Fermi-level is about 0.29 states per eV-atom. The NiAl+ ions were observed in the high-temperature mass spectra. Pressures for the gas at these temperatures were estimated and used with the results of quantum-mechanical calculations of total energy, specific heat, and entropy to calculate free-energy functions for the gas. These and additional results are compared with other measurements and discussed in terms of current theories of the electronic and structural properties of the compound.  相似文献   

7.
The solubility measurements of sodium dicarboxylate salts; sodium oxalate, malonate, succinate, glutarate, and adipate in water at temperatures from (278.15 to 358.15 K) were determined. The molar enthalpies of solution at T = 298.15 K were derived: ΔsolHm (m = 2.11 mol · kg?1) = 13.86 kJ · mol?1 for sodium oxalate; ΔsolHm (m = 3.99 mol · kg?1) = 14.83 kJ · mol?1 for sodium malonate; ΔsolHm (m = 2.45 mol · kg?1) = 14.83 kJ · mol?1 for sodium succinate; ΔsolHm (m = 4.53 mol · kg?1) = 16.55 kJ · mol?1 for sodium glutarate, and ΔsolHm (m = 3.52 mol · kg?1) = 15.70 kJ · mol?1 for sodium adipate. The solubility value exhibits a prominent odd–even effect with respect to terms with odd number of sodium dicarboxylate carbon numbers showing much higher solubility. This odd–even effect may have implications for the relative abundance of these compounds in industrial applications and also in the atmospheric aerosols.  相似文献   

8.
N. Xaba  D. Jaganyi 《Polyhedron》2009,28(6):1145-1149
Hydroboration reactions of 4-octene with HBBr2 · SMe2, HBCl2 · SMe2 and H2BBr · SMe2 in CH2Cl2 were studied as function of concentration and temperature and compared with those of 1-octene. On average, hydroboration with dihaloborane proceeded 16 times slower for 4-octene than for 1-octene. In the case of the reactions with the monohaloborane, this factor is halved. This can be explained by the difference in the relative rates of dissociates of Me2S from the dihaloborane and a monohaloborane complex, respectively. The reactions involving H2BBr · SMe2 also exhibited a k?2 value, an indication of the presence of a parallel reaction, most likely a rearrangement process facilitating isomerization by way of a π-complex. The moderate ΔH values accompanied by small ΔS values (94 ± 4 kJ mol?1, ?3 ± 13 J K?1 mol?1 for HBBr2 · SMe2; 93 ± 1 kJ mol?1, ?17 ± 4 J K?1 mol?1 for HBCl2 · SMe2 and in the case of H2BBr · SMe2, 90 ± 13 kJ mol?1, +12 ± 44 J K?1 mol?1 and 83 ± 13 kJ mol?1, ?24 ± 45 J K?1 mol?1, respectively, for the k2 and k?2 processes) imply a process that is dissociatively dominated, with the overall mode of activation being interchange dissociative (Id).  相似文献   

9.
Equilibrium studies on the ternary complex systems involving ampicillin (amp) as ligand (A) and imidazole containing ligands viz., imidazole (Him), benzimidazole (Hbim), histamine (Hist) and histidine (His) as ligands (B) at 37 °C and I = 0.15 mol dm?3 (NaClO4) show the presence of CuABH, CuAB and CuAB2. The proton in the CuABH species is attached to ligand A. In the ternary complexes the ligand, amp(A) binds the metal ion via amino nitrogen and carbonyl oxygen atom. The CuAB (B = Hist/His)/CuAB2 (B = Him/Hbim) species have also been isolated and the analytical data confirmed its formation. Non-electrolytic behavior and monomeric type of chelates have been assessed from their low conductance and magnetic susceptibility values. The electronic and vibrational spectral results were interpreted to find the mode of binding of ligands to metal and geometry of the complexes. This is also supported by the g tensor values calculated from ESR spectra. The thermal behaviour of complexes were studied by TGA/DTA. The redox behavior of the complexes has been studied by cyclic voltammetry. The antimicrobial activity and CT DNA cleavage study of the complexes show higher activity for ternary complexes.  相似文献   

10.
The heat capacity of polycrystalline germanium disulfide α-GeS2 has been measured by relaxation calorimetry, adiabatic calorimetry, DSC and heat flux calorimetry from T = (2 to 1240) K. Values of the molar heat capacity, standard molar entropy and standard molar enthalpy are 66.191 J · K?1 · mol?1, 87.935 J · K?1 · mol?1 and 12.642 kJ · mol?1. The temperature of fusion and its enthalpy change are 1116 K and 23 kJ · mol?1, respectively. The thermodynamic functions of α-GeS2 were calculated over the range (0 ? T/K ? 1250).  相似文献   

11.
12.
The temperature dependence of the rate constant of the inversion substitution reactions CH3X + O2 → CH3O2? + X? (X = SH, NO2), can be expressed as k = 6.8 × 10–12(T/1000)1.49exp(–62816 cal mol–1/RT) cm3 s–1 (X = SH) and k = 6.8 × 10–12(T/1000)1.26 × × exp(–61319 cal mol–1/RT) cm3 s–1 (X = NO2), as found with the use of high-level quantum chemical methods and the transition state theory.  相似文献   

13.
The novel anodic electrochemiluminescence (ECL) behaviors of the CdSe nanoparticles coreacted with tertiary amine were observed. The ECL intensity peak located near +1.2 V, accompanied with a shoulder above +1.5 V. The ECL emission peak estimated at about 580 nm was almost identical with that of the photoluminescence (PL), indicating the passivation of the surfaces of the nanoparticles. The dependence of the ECL on system pH and the concentration of the coreactants were also discussed. The halide ions could quench ECL, with the effective order I? > Br? > Cl?. Based on these results the possible ECL processes were proposed.  相似文献   

14.
The enthalpy of formation of zinc acetate dihydrate (Zn(CH3COO)2 · 2H2O) was measured with respect to crystalline zinc oxide (ZnO), glacial acetic acid (CH3COOH) and liquid water by room temperature solution calorimetry. The enthalpy of formation was verified by utilizing two independent thermodynamic cycles, using enthalpy of solution measurements in 5 mol · L?1 sodium hydroxide (NaOH) and in 5 mol · L?1 hydrochloric acid (HCl) solutions. The enthalpy of the reaction ZnO (cr) + 2CH3COOH (l) + H2O (l) to form Zn(CH3COO)2 · 2H2O (cr) is –(65.78 ± 0.36) kJ · mol?1 for measurements in 5 mol · L?1 NaOH and –(66.25 ± 0.17) kJ · mol?1 for measurements in 5 mol · L?1 HCl. The standard enthalpy of formation of Zn(CH3COO)2 · 2H2O from the elements is –(1669.35 ± 1.30) kJ · mol?1. This work provides the first calorimetric measurement of the enthalpy of formation of Zn(CH3COO)2 · 2H2O.  相似文献   

15.
Unless the radiolytic reducing species are neutralised or converted into oxidising species, an EB remediation system cannot be considered a true Advanced Oxidation Processes (AOP). A water/H2O2 system irradiated by UVC mercury lamps constitutes a widely used OH production method. Employing H2O2 in radiolysis as well, an enhancement of the oxidative efficiency of an EB treatment can be obtained. Pulse radiolysis measurements of an aerated aqueous/H2O2/KSCN system have been systematically undertaken to assess the optimal H2O2 concentration. By linearly fitting a competition kinetics relationship, it is found that the scavengeable extra-yield of OH is ΔG(OH)=0.24 μmol J?1 (R=0,9958), while the maximum experimental yield is measured G(OH)max=(0.52±0.02) μmol J?1 when [H2O2]=5–10 mM. Exceeding these concentrations the OH yield drops off.  相似文献   

16.
Wet oxidation (high-temperature, high-pressure oxidation of organic wastes in aqueous solution) and radiation technology were combined in γ-ray and electron beam induced oxidation of 4×10?4–1×10?2 mol dm?3 Na-phenolate solutions in a wide O2 concentration (1–20 bar pressure) and absorbed dose (0–50 kGy) range. Most experiments were made in stainless steel high pressure autoclave equipped with magnetic stirrer. The rate of oxidation was followed by chemical oxygen demand and total organic carbon content measurements. The rate was similar in γ-ray and pulsed electron beam irradiation and increased with O2 concentration in the liquid.  相似文献   

17.
Monomethylmercury and ethylmercury were determined on line using flow injection-chemical vapor generation atomic fluorescence spectrometry without neither requiring a pre-treatment with chemical oxidants, nor UV/MW additional post column interface, nor organic solvents, nor complexing agents, such as cysteine. Inorganic mercury, monomethylmercury and ethylmercury were detected by atomic fluorescence spectrometry in an Ar/H2 miniaturized flame after sodium borohydride reduction to Hg0, monomethylmercury hydride and ethylmercury hydride, respectively. The effect of mercury complexing agent such as cysteine, ethylendiaminotetracetic acid and HCl with respect to water and Ar/H2 microflame was investigated.The behavior of inorganic mercury, monomethylmercury and ethylmercury and their cysteine-complexes was also studied by continuous flow-chemical vapor generation atomic fluorescence spectrometry in order to characterize the reduction reaction with tetrahydroborate. When complexed with cysteine, inorganic mercury, monomethylmercury and ethylmercury cannot be separately quantified varying tetrahydroborate concentration due to a lack of selectivity, and their speciation requires a pre-separation stage (e.g. a chromatographic separation). If not complexed with cysteine, monomethylmercury and ethylmercury cannot be separated, as well, but their sum can be quantified separately with respect to inorganic mercury choosing a suitable concentration of tetrahydroborate (e.g. 10? 5 mol L? 1), thus allowing the organic/inorganic mercury speciation.The detection limits of the flow injection-chemical vapor generation atomic fluorescence spectrometry method were about 45 nmol L? 1 (as mercury) for all the species considered, a relative standard deviation ranging between 1.8 and 2.9% and a linear dynamic range between 0.1 and 5 μmol L? 1 were obtained. Recoveries of monomethylmercury and ethylmercury with respect to inorganic mercury were never less than 91%. Flow injection-chemical vapor generation atomic fluorescence spectrometry method was validated by analyzing the TORT-1 certificate reference material, which contains only monomethylmercury, and obtaining 83 ± 5% of monomethylmercury recovered, respectively. This method was also applied to the determination of monomethylmercury in saliva samples.  相似文献   

18.
We determined apparent molar volumes V? at 278.15 ? (T/K) ? 368.15 and apparent molar heat capacities Cp,? at 278.15 ? (T/K) ? 393.15 at p = 0.35 MPa for aqueous solutions of tetrahydrofuran at m from (0.016 to 2.5) mol · kg?1, dimethyl sulfoxide at m from (0.02 to 3.0) mol · kg?1, 1,4-dioxane at m from (0.015 to 2.0) mol · kg?1, and 1,2-dimethoxyethane at m from (0.01 to 2.0) mol · kg?1. Values of V? were determined from densities measured with a vibrating-tube densimeter, and values of Cp,? were determined with a twin fixed-cell, differential, temperature-scanning calorimeter. Empirical functions of m and T for each compound were fitted to our V? and Cp,? results.  相似文献   

19.
The chemical potentials of CaO in two-phase fields (TiO2 + CaTiO3), (CaTiO3 + Ca4Ti3O10), and (Ca4Ti3O10 + Ca3Ti2O7) of the pseudo-binary system (CaO + TiO2) have been measured in the temperature range (900 to 1250) K, relative to pure CaO as the reference state, using solid-state galvanic cells incorporating single crystal CaF2 as the solid electrolyte. The cells were operated under pure oxygen at ambient pressure. The standard Gibbs free energies of formation of calcium titanates, CaTiO3, Ca4Ti3O10, and Ca3Ti2O7, from their component binary oxides were derived from the reversible e.m.f.s. The results can be summarised by the following equations: CaO(solid) + TiO2(solid)  CaTiO3(solid), ΔG° ± 85/(J · mol?1) = ?80,140 ? 6.302(T/K); 4CaO(solid) + 3TiO2(solid)  Ca4Ti3O10(solid), ΔG° ± 275/(J · mol?1) = ?243,473 ? 25.758(T/K); 3CaO(solid) + 2TiO2(solid)  Ca3Ti2O7(solid), ΔG° ± 185/(J · mol?1) = ?164,217 ? 16.838(T/K).The reference state for solid TiO2 is the rutile form. The results of this study are in good agreement with thermodynamic data for CaTiO3 reported in the literature. For Ca4Ti3O10 Gibbs free energy of formation obtained in this study differs significantly from that reported by Taylor and Schmalzried at T = 873 K. For Ca3Ti2O7 experimental measurements are not available in the literature for direct comparison with the results obtained in this study. Nevertheless, the standard entropy for Ca3Ti2O7 at T = 298.15 K estimated from the results of this study using the Neumann–Koop rule is in fair agreement with the value obtained from low-temperature heat capacity measurements.  相似文献   

20.
Activity coefficients of CaCl2 in disaccharide {(maltose, lactose) + water} mixtures at 298.15 K were determined by cell potentials. The molalities of CaCl2 ranged from about 0.01 mol · kg?1 to 0.20 mol · kg?1, the mass fractions of maltose from 0.05 to 0.25, and those of lactose from 0.025 to 0.125. The cell potentials were analyzed by using the Debye–Hückel extended equation and the Pitzer equation. The activity coefficients obtained from the two theoretical models are in good agreement with each other. Gibbs free energy interaction parameters (gES) and salting constants (kS) were also obtained. These were discussed in terms of the stereo-chemistry of saccharide molecules and the structural interaction model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号