首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platinum nanoparticles/carbon nanotubes (Ptnano/CNTs) were rapidly synthesized by microwave radiation, and applied for the oxidative determination of arsenic(III). The transmission electron microscopy (TEM) revealed the size of synthesized Pt nanoparticles with nominal diameter of 15 ± 3 nm. Ptnano/CNTs modified glassy carbon electrode (Ptnano/CNTs/GCE) exhibited better performance for arsenic(III) analysis than that of Pt nanoparticles modified GCE (Ptnano/GCE) by electrochemical deposition or Pt foil electrode. Excellent reproducibility of the Ptnano/CNTs/GCE was obtained with the relative standard deviation (RSD) of 3.5% at 20 repeated analysis of 40 μM As(III), while the RSD was 9.8% for Ptnano/GCE under the same conditions. The limit of determination (LOD) of the Ptnano/CNTs/GCE was 0.12 ppb, which was 1–2 orders of magnitude lower than that of Ptnano/GCE or Pt foil electrode.  相似文献   

2.
Electrochemical stabilities of Pt deposited on carbon nanotubes (CNTs) and nitrogen-doped carbon nanotubes (CNx) of different nitrogen contents are compared with accelerated durability tests (ADT) for the first time. Transmission electron microscopy (TEM) images reveal the different structures of CNTs and CNx, and the decrease of Pt particle size with the nitrogen incorporation into CNTs. Based on the loss of electrochemical surface area (ESA) and TEM images, Pt/CNx exhibited much higher stability than Pt/CNTs, and the Pt stability increases with the increase of nitrogen contents in the CNx supports.  相似文献   

3.
Stacking of individual graphene sheets (GS) is effectively inhibited by introducing one-dimensional carbon nanotubes to form a 3-D hierarchical structure which enhances the utilization of GS-based composites. From SEM images, CNTs are useful nanospacers for diminishing the face-to-face aggregation of GS. The specific electrochemically active surface area (SECSA) and specific double-layer capacitance (CS,DL) of Pt/GS–CNTs (127.9 m2/g, 171.3 F/g) is much higher than that of Pt/GS (105.4 m2/g, 104.7 F/g) and Pt/CNTs (51.5 m2/g, 37.1 F/g), revealing the synergistic effects between GS and CNTs on enhancing the electrochemical activity of Pt nanoparticles and electrolyte-accessible surface area.  相似文献   

4.
Significant enhancement in supercapacitor performance has been achieved via a new RuO2 nanocomposite materials prepared by direct ruthenium sputtering on arrayed multi-walled carbon nanotubes supported by Ti-buffered Si wafer. XPS, HRTEM and SAED analyses reveal that as-prepared nanoparticles have a crystalline Ru metal core with RuO2 oxide coating. The nanocomposites convert to RuO2–CNx NTs with subsequent electrochemical cycling. At present, well-dispersed and strongly adhered RuO2 NPs have been densely populated on CNx NTs to obtain the overall specific capacitance (1380 F/g-RuO2), charging–discharging rate (up to 600 mV/s) and operation stability (5000 cycles). Thus, RuO2–CNx NTs nanocomposites would make a promising candidate for use in next-generation high efficiency miniaturized supercapacitors directly fabricated on Si substrate.  相似文献   

5.
Heteropolyanions of tungstophosphoric acid (PWA) have been successfully hybridized with carbon nanotubes (CNTs) by a severe mechanical milling. The obtained hybrid is electroactive for hydrogen evolution (HE) at potentials as positive as −0.16 V vs. Ag/AgCl in 0.2 M HClO4 aqueous solution and its electrocatalysis is up to the level of Pt/CNTs (20 wt% Pt) for HE, indicating a vigorous alternative to Pt group metals. The HE mechanism of the hybrid was also studied and it was found that the tungsten oxycarbides are the electroactive components for HE.  相似文献   

6.
Multi-walled carbon nanotubes (MWCNTs) which were directly synthesized on carbon cloth were modified by a microwave digestion method in 5 M HNO3 for supporting Pt nanoparticles. The characterizations of modified CNTs were carried out by TEM, XPS, FTIR and Raman spectroscopy. The HRTEM image shows the caps of MWCNTs are opened after modifying by microwave digestion method. The open-end and undamaged MWCNTs can provide a larger surface area for supporting more catalysts. Furthermore, the methanol electrocatalytic oxidation of microwave digestion treated Pt/MWCNTs electrode shows higher current density than pristine and nitric acid-treated MWCNTs from cyclic voltammograms. This can be an effective and undamaged method for modifying CNTs.  相似文献   

7.
Conducting polymer composite films comprised of polypyrrole (PPy) and multiwalled carbon nanotubes (MWCNTs) [PPy–CNT] were synthesized by in situ polymerization of pyrrole on carbon nanotubes in 0.1 M HCl containing (NH4)S2O8 as oxidizing agent over a temperature range of 0–5 °C. Pt nanoparticles are deposited on PPy–CNT composite films by chemical reduction of H2PtCl6 using HCHO as reducing agent at pH = 11 [Pt/PPy–CNT]. The presence of MWCNTs leads to higher activity, which might be due to the increase of electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces allowing higher dispersion and utilization of the deposited Pt nanoparticles. A comparative investigation was carried out using Pt–Ru nanoparticles decorated PPy–CNT composites. Cyclic voltammetry demonstrated that the synthesized Pt–Ru/PPy–CNT catalysts exhibited higher catalytic activity for methanol oxidation than Pt/PPy–CNT catalyst. Such kinds of Pt and Pt–Ru particles deposited on PPy–CNT composite polymer films exhibit excellent catalytic activity and stability towards methanol oxidation, which indicates that the composite films is more promising support material for fuel cell applications.  相似文献   

8.
A research was performed to evaluate the capabilities of carbon nanotubes (CNTs) and modified CNTs to serve as sorbents for preconcentrating Cd together with on-line ultrasonic nebulization (USN)-inductively coupled plasma optical emission spectrometry (ICPOES). Three different carbon nanotubes sustrates namely, carbon nanotubes (CNTs), oxidized-carbon nanotubes (ox-CNTs) and l-alanine-carbon nanotubes (ala-CNTs) were studied systematically and the main factors influencing the preconcentration and determination of Cd were examined thoroughly. The CNTs evaluated showed dissimilar adsorption behaviors leading to increasing preconcentration factors when used in the proposed on-line solid phase extraction (SPE) system as follows: CNT < ala-CNT < ox-CNT. Aiming to achieve the best analytical performance, ox-CNTs were used as they enable quantitative retention of Cd at pH 7.0 and instantaneous elution of the analyte with 10% HNO3. Under optimal conditions, the adsorption capacity on ox-CNTs was found to be 130 μmol g?1 and the detection limit (3σ) achieved was 1.03 μg L? 1. The precision of the method expressed as the relative standard deviation (RSD) turned to be 3.0%. The flow injection method involving use of ox-CNTs as sorbent and USN-ICPOES for detection was successfully applied to the determination of Cd in different kinds of environmental samples.  相似文献   

9.
By grafting with poly(amidoamine) (PAMAM) dendrimer, novel carbon nanotube (CNT) nano-composites have been successfully prepared. The novel functionalized matrix with plenty amino groups circumvents the troublesome solubility problem of CNTs in solvents, especially in water, greatly expanding the scope of the application of carbon nanotubes. The GOx and HRP immobilized CNT-PAMAM based on the functional CNTs was synthesized. The bi-enzymatic CNT-PAMAM nano-composites are highly dispersible in water and show very promising applications in the fabrication of mediator-free bi-enzymatic biosensors for sensitive detection of glucose. The cooperation of nano-composite between CNT and high dense GOx and HRP results in very high sensitivity to glucose with a current response of 2200 nA mM−1 and fast response (∼1 s). The modified electrode exhibits a wide linear response range for glucose from 4.0 μM to 1.2 mM (R = 0.9971, N = 15), with a detection limit of 2.5 μM. The negative electrode potential of −0.34 V is favorable for glucose detection in real samples without interference caused by other biomolecules.  相似文献   

10.
Highly ordered anodic titania nanotube arrays provide a large surface area for electrodepositing nickel nanoparticles which are used as the catalyst for carbon nanotube growth. Pt and Ru nanoparticles, approximately 3 nm in diameter, are uniformly electrodeposited on the as synthesized titania-supported carbon nanotubes (CNTs), constructing a novel catalyst for electrocatalytic oxidation of methanol. An enhanced and stable catalytic activity is obtained due to the uniformly dispersed Pt and Ru nanoparticles, and the large CNT network facilitating the electron transfer between the adsorbed methanol molecules and the catalyst substrate. An oxidation peak current density of 55 mA/cm2 is achieved at a low Pt load of 0.126 mg/cm2 with a Pt/Ru mole ratio of 1:1.  相似文献   

11.
A facile impregnation method under mild condition is designed for synthesis of highly dispersed Pt nanoparticles with a narrow size of 4-7 nm on nitrogen-doped carbon nanotubes (CNx). CNx do not need any pre-surface modification due to the inherent chemical activity. The structure and nature of Pt/CNx were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy spectrum. All the experimental results revealed that the large amount of doped nitrogen atoms in CNx was virtually effective for capturing the Pt(IV) ions. The improved surface nitrogen functionalities and hydrophilicity contributed to the good dispersion and immobi- lization of Pt nanoparticles on the CNx surface. The Pt/CNx served as active and reusable catalysts in the hydrogenation of allyl alcohol. This could be attributed to high dispersion of Pt nanoparticles and stronger interaction between Pt and the supports, which prevented the Pt nanoparticles from aggregating into less active Pt black and from leaching as well.  相似文献   

12.
Bamboo-shaped carbon nanotubes (BCNTs), with a large amount of pentagon defects introduced in the walls, were explored as the support of high loaded Pt–Ru catalysts for the anode of direct methanol fuel cells (DMFCs) in comparison with conventional carbon nanotubes (CNTs) and Vulcan XC carbon black. By ethylene glycol reduction, Pt–Ru catalysts with a high loading (60 wt%) and uniform particle size of 2–3 nm were uniformly deposited on BCNTs; while 60 wt% Pt–Ru catalysts on CNTs resulted in significant agglomeration. The Pt–Ru/BCNT catalyst showed the highest activity on methanol oxidation in cyclic voltammetry and highest performance as the anode in a DMFC single cell. Such an enhancement was largely ascribed to an enhanced interaction of the introduced pentagon defects with Pt–Ru, which could promote a high loading and well dispersion of Pt–Ru catalysts and the charge transfer from Pt–Ru to the tubes.  相似文献   

13.
Well-defined tungsten-oxide-supported platinum nanoparticles (Pt/WOx) were elaborated by impregnation-reduction of a platinum salt onto commercial monoclinic WO3. Field-emission gun scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM) revealed that the Pt particles are well-distributed on the oxide support, present a narrow particle size distribution centered on ca. 2–3 nm and a low degree of agglomeration. Carbon black was added to ensure electronic percolation in the electrodes during the electrochemical measurements. COads electrooxidation currents were monitored at potentials as low as 0.1 V vs. RHE on Pt/WOx, demonstrating high CO-tolerance compared to carbon-supported Pt or PtRu catalysts.  相似文献   

14.
Aligned carbon nanotubes (ACNTs) electrode has been developed for the direct protein electrochemistry and enzyme-biosensor study involving two types of nanoparticles. Pt nanoparticles (Ptnano) were electro-modified on the ACNTs’ each tube, greatly increasing the electrode surface area for locating protein and also its electronic transfer ability. Glucose oxidase (GOD) with chitosan (CS) and CdS nanoparticles electrochemically coated on each tube of ACNTs–Ptnano by the electrodeposition reaction of CS when pH value passing its pKa. The CdS nanoparticles between ACNTs electrode and GOD have stimulated the GOD’s direct electron transfer during its redox reaction of FAD/FADH2. The CS–GOD–CdS/ACNTs–Ptnano electrode also offer sensitive response to the substrate of glucose with detection limit of 46.8 μM (S/N = 3) and apparent Michaelis–Menten constant of 11.86 mM.  相似文献   

15.
Pt–TiO2/CNTs electrocatalysts for direct ethanol fuel cells (DEFCs) were prepared by sol–gel and ethylene glycol reduction method. XRD and TEM showed that the size of the Pt particles on TiO2/CNTs is 3.5–4 nm and with narrow particle size distribution. HRTEM revealed that a thin layer of uniform amorphous TiO2 on CNTs was formed and the faces of the Pt crystal on Pt–TiO2/CNTs catalysts were quite “rough” and “rounded” and some grain bounders and/or twins also appeared. The electrochemical studies using cyclic voltammetry (CV), chronoamperometry and CO stripping voltammetry indicate that Pt–TiO2/CNTs catalysts have higher electro-catalytic activity and CO-tolerance for ethanol oxidation than Pt/C (20 wt% Pt, E-TEK) and Pt/CNTs catalyst in acid. The Pt/TiO2 molar ratio was also optimized and proved that 1:1 was the best Pt/TiO2 molar ratio.  相似文献   

16.
In this work, a novel amperometric biosensor based on carbon nanoplatelets derived from ground cherry (Physalis peruviana) husks (GCHs-CNPTs) is reported for the sensitive and selective detection of ascorbic acid (AA). The structure of the nanoplatelets, the oxygen-containing groups and edge-plane-like defective sites (EPDSs) on the GCHs-CNPTs were characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The presence of GCHs-CNPTs with a high density of EPDSs effectively enhances the electron transfer between AA and the glassy carbon electrode (GCE), and thus induces a substantial decrease in the overvoltage for AA oxidation compared with both a bare GCE and a GCE modified with carbon nanotubes (CNTs/GCE). In particular, an amperometric biosensor based on GCHs-CNPTs exhibited a wider linear range (0.01–3.57 mM), higher sensitivity (208.63 μA mM 1 cm 2), a lower detection limit (1.09 μM, S/N = 3) and better resistance to fouling for AA determination compared to a CNTs/GCE. The great potential of the GCHs-CNPTs/GCE for practical and reliable AA analysis was demonstrated by the successful determination of AA in samples taken from a medical injection dose and a soft drink.  相似文献   

17.
Polyelectrolytes with various characteristic functional groups as interlinkers to anchor Pt nanoparticles were used to functionalize carbon nanotubes (CNTs) as Pt electrocatalyst support. It was found that polyanions (poly(styrenesulfonic acid) (PSS), and poly(acrylic acid sodium) (PAA)) have a beneficial effect on methanol electrooxidation on Pt nanoparticles supported on carbon nanotubes via modifying their electronic structure through charge transfer from polyanions to Pt sites and supply of oxygen-containing species. The increased electron density around Pt sites by the charge transfer from polyanions would cause partial filling of Pt 5d-bands, resulting in the downshift of d-band center and weaker chemisorption with oxygen-containing species (e.g. COad). The weakened chemisorption of CO on Pt nanoparticles would promote the methanol electrooxidation. On the contrary, polycations would have an opposite effect on the electronic structure and chemisorption properties of Pt nanoparticles.  相似文献   

18.
A laser processed micro-supercapacitor (LPMS) based on carbon nanotubes/manganese dioxide composite is fabricated through slurry dispensing and laser scribing techniques. This device presents superior electrochemical performance and aesthetic property.  相似文献   

19.
Bromine and iodine determination was performed in carbon nanotubes (CNTs) by inductively coupled plasma mass spectrometry (ICP-MS) after sample preparation using pyrohydrolysis. Samples of CNTs (up to 500 mg) were mixed with 750 mg of V2O5 and heated at 950 °C during 12.5 min in a quartz tube under water vapor and air. The main operational conditions of pyrohydrolysis (carrier gas, absorbing solution, heating time, sample mass and use of V2O5) were evaluated. Accuracy was evaluated using certified reference materials (CRM) with similar matrix and also by comparison of results obtained after digestion of samples by microwave-induced combustion (MIC) and determination by ICP-MS. Agreement with CRM values was higher than 97% for Br and better than 96% in comparison with reference values (MIC/ICP-MS) of Br and I in CNTs samples. The limit of detection of the method for Br and I determination by ICP-MS was 0.05 and 0.004 μg g? 1, respectively. Using a relatively simple and low cost pyrohydrolysis apparatus up to four samples can be processed per hour. The pyrohydrolysis sample preparation procedure is easy to be performed and provide a clean solution for analysis by ICP-MS, which is very attractive for Br and I control in CNTs.  相似文献   

20.
The development of a single-walled carbon nanotube (SWCNT)-arrayed microelectrode chip is reported here. SWCNT-arrayed electrodes were formed directly on Pt surfaces, and were also arrayed on the chip. The electrochemical characteristics of the devices were investigated using potassium ferricyanide, K3[Fe(CN)6] in connection with cyclic voltammetry (CV). The electrochemical signals of electro-active amino acids; L-Tyrosine (Tyr), L-Cysteine (Cys) and L-Tryptophan (Trp) were detected using differential pulse voltammetry (DPV). The chip operated at a lower oxidation potential (vs. Ag/AgCl) compared with conventional carbon and Pt disc electrodes in 50 mM phosphate buffer solution (PBS, pH 7.4). The linear response was observed between 0.1–1 μM and 100 μM for the amino acids with correlation coefficients higher than 0.99. The electrochemical measurements of K3[Fe(CN)6] and amino acids revealed that the peak current intensities using SWCNT-arrayed electrodes were about 100-fold higher than those using bare Pt-arrayed microelectrodes. Additionally, the surface area dependence of the peak current responses was plotted. We concluded that our chips with SWCNT-arrayed microelectrodes provided a promising platform for electrochemical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号