首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In this paper, we demonstrate how condensed moisture droplets wet classical superhydrophobic lotus leaf surfaces and analyze the mechanism that causes the increase of contact angle hysteresis. Superhydrophobic lotus leaves in nature show amazing self-cleaning property with high water contact angle (>150°) and low contact angle hysteresis (usually <10°), causing droplets to roll off at low inclination angles, in accordance with classical Cassie–Baxter wetting state. However, when superhydrophobic lotus leaves are wetted with condensation, the condensed water droplets are sticky and exhibit higher contact angle hysteresis (40–50°). Compared with a fully wetted sessile droplet (classical Wenzel state) on the lotus leaves, the condensed water droplet still has relatively large contact angle (>145°), suggesting that the wetting state deviates from a fully wetted Wenzel state. When the condensed water droplets are subjected to evaporation at room conditions, a thin water film is observed bridging over the micropillar structures of the lotus leaves. This causes the dew to stick to the surface. This result suggests that the condensed moisture does not uniformly wet the superhydrophobic lotus leaf surfaces. Instead, there occurs a mixed wetting state, between classical Cassie–Baxter and Wenzel states that causes a distinct increase of contact angle hysteresis. It is also observed that the mixed Cassie–Baxter/Wenzel state can be restored to the original Cassie–Baxter state by applying ultrasonic vibration which supplies energy to overcome the energy barrier for the wetting transition. In contrast, when the surface is fully wetted (classical Wenzel state), such restoration is not observed with ultrasonic vibration. The results reveal that although the superhydrophobic lotus leaves are susceptible to being wetted by condensing moisture, the configured wetting state is intermediate between the classical Cassie–Baxter and Wenzel states.  相似文献   

2.
A series of pillar-like patterned silicon wafers with different pillar sizes and spacing are fabricated by photolithography and further modified by a self-assembled fluorosilanated monolayer. The dynamic contact angles of water on these surfaces are carefully measured and found to be consistent with the theoretical predictions of the Cassie model and the Wenzel model. When a water drop is at the Wenzel state, its contact angle hysteresis increases along with an increase in the surface roughness. While the surface roughness is further raised beyond its transition roughness (from the Wenzel state to the Cassie state), the contact angle hysteresis (or receding contact angle) discontinuously drops (or jumps) to a lower (or higher) value. When a water drop is at the Cassie state, its contact angle hysteresis strongly depends on the solid fraction and has nothing to do with the surface roughness. Even for a superhydrophobic surface, the contact angle hysteresis may still exhibit a value as high as 41 degrees for the solid fraction of 0.563.  相似文献   

3.
The relationship between the contact angles, surface tension, and surface roughness is reviewed. Numerical formulas related to the superhydrophobic rough surfaces of polymers are predicted with two approaches, the Wenzel and Cassie–Baxter models. With these models as a guide, an artificial superhydrophobic surface is created. Rough nylon surfaces mimicking the lotus leaf are created by the coating of a polyester surface with nylon‐6,6 short fibers via the flocking process. Poly(acrylic acid) chains aregrafted onto nylon‐6,6 surfaces, and this is followed by the grafting of 1H,1H‐perfluorooctylamine onto the poly(acrylic acid) chains. Water contact angles as high as 178° are achieved. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 253–261, 2007.  相似文献   

4.
Despite the practical need, no models exist to predict contact angles or wetting mode of surfactant solutions on rough hydrophobic or superhydrophobic surfaces. Using Gibbs' adsorption equation and a literature isotherm, a new model is constructed based on the Wenzel and Cassie equations. Experimental data for aqueous solutions of sodium dodecyl sulfate (SDS) contact angles on smooth Teflon surfaces are fit to estimate values for the adsorption coefficients in the model. Using these coefficients, model predictions for contact angles as a function of topological f (Cassie) and r (Wenzel) factors and SDS concentration are made for different intrinsic contact angles. The model is also used to design/tune surface responses. It is found that: (1) predictions compare favorably to data for SDS solutions on five superhydrophobic surfaces. Further, the model predictions can determine which wetting mode (Wenzel or Cassie) occurred in each experiment. The unpenetrated or partially penetrated Cassie mode was the most common, suggesting that surfactants inhibit the penetration of liquids into rough hydrophobic surfaces. (2) The Wenzel roughness factor, r, amplifies the effect of surfactant adsorption, leading to larger changes in contact angles and promoting total wetting. (3) The Cassie solid area fraction, f, attenuates the lowering of contact angles on rough surfaces. (4) The amplification/attenuation is understood to be due to increased/decreased solid-liquid contact-area.  相似文献   

5.
On rough surfaces, two distinct wetting modes can appear. These two states are usually described by the theories of Cassie (drops suspended on top of roughness features) and Wenzel (drops impaled on roughness features). Whereas the wetting transition from the Cassie to the Wenzel state has been relatively well studied both experimentally and theoretically, the question of whether metastable Wenzel drops exist and how they transition to the Cassie state has remained open. In this work, we study the wetting behavior of microstructured post surfaces coated with a hydrophobic fluoropolymer. Through condensation, the formation of metastable Wenzel droplets is induced. We show that under certain conditions drops can transition from the Wenzel to the Cassie state.  相似文献   

6.
以砂纸为模板制作聚合物超疏水表面   总被引:7,自引:2,他引:5  
报道了一种聚合物材料超疏水表面的简便制备方法. 以不同型号的金相砂纸为模板, 通过浇注成型或热压成型技术, 在聚合物表面形成不同粗糙度的结构. 接触角实验结果证明, 聚合物表面与水的接触角随着所用砂纸模板粗糙度的增加而加大, 其中粒度号为W7和W5砂纸制作的表面与水的接触角可超过150°, 显示出超疏水性质. 多种聚合物使用砂纸为模均可制备不同粗糙度及超疏水的表面, 本征接触角对复制表面浸润性的影响从Wenzel态到Cassie态而变小. 扫描电镜结果表明, 不规则形状的砂纸磨料颗粒构成了超疏水所需要的微纳米结构的模板.  相似文献   

7.
A novel method coupling the Langmuir-Blodgett (LB) deposition of silica particles and the formation of a self-assembled monolayer (SAM) of alkylsilane is proposed for fabricating hydrophobic surfaces. The LB deposition and the SAM are supposed to confer the substrate surface roughness and low surface energy, respectively. By controlling the hydrophobic-hydrophilic balance of the silica particle surface through the adsorption of surfactant molecules, deposition of monolayers consisting of hexagonally close-packed arrays of particles on a glass substrate can then be successfully conducted in a Langmuir trough. LB particulate films with a particle layer number up to 5 were thereby prepared. A sintered and hydrophobically finished particulate film with roughness factor of 1.9 was finally fabricated by sintering and surface silanization. Effects of particle size and particle layer number on the wetting behavior of the particulate films were systematically studied by measuring static and dynamic water contact angles. The experimental results revealed that a static contact angle of about 130 degrees resulted from the particulate films regardless of the particle size and particle layer number. This is consistent with the predictions of both the Wenzel model and the Cassie and Baxter model in that roughness of a hydrophobic surface can increase its hydrophobicity and a switching of the dominant mode from Wenzel's to Cassie and Baxter's. In general, an advancing contact angle of about 150 degrees , a receding contact angle of about 110 degrees , and a contact angle hysteresis of about 40 degrees were exhibited by the particulate films fabricated.  相似文献   

8.
Polycrystalline anatase TiO(2)-based thin films with surface roughness were fabricated using a sublimation method. Their surfaces showed hydrophobicity with a water contact angle (CA) higher than 130 degrees when stored in the dark. For the films, the hydrophobic conversion behavior and critical CA depended on surface morphologies. The higher hydrophobic conversion rate and higher critical CA were explained by the smaller r in the Wenzel equation and the smaller f (f = 0.56, 0.30) in the Cassie equation, respectively. Moreover, good reversibility between hydrophobicity (CA = 130 degrees ) and high hydrophilicity (CA = 0 degrees ) was observed by alternating between UV light irradiation and dark storage. The combination of chromium oxide with anatase TiO(2) markedly shortens the period of hydrophobic conversion from 12 to 5 days.  相似文献   

9.
超疏水表面微纳二级结构对冷凝液滴最终状态的影响   总被引:1,自引:0,他引:1  
从超疏水表面(SHS)上初始冷凝液核长大、合并、形成初始液斑开始,分析计算了冷凝液斑变形成为Wenzel或Cassie液滴过程中界面能量的变化,并以界面能曲线降低、是否取最小值为判据,确定冷凝液滴的最终稳定状态.计算结果表明:在只有微米尺度的粗糙结构表面上,冷凝液滴的界面能曲线一般都是先降低再升高,呈现Wenzel状态;而当表面具有微纳米二级粗糙结构,且纳米结构的表面空气面积分率较高时,冷凝液滴的能量曲线持续降低,直至界面能最小的Cassie状态,因此可以自发地形成Cassie液滴.还计算了文献中具有不同结构参数的SHS上冷凝液滴的状态和接触角,并与实验结果进行了比较,结果表明,计算的冷凝液滴状态与实验观察结果完全吻合.因此,微纳二级结构是保持冷凝液滴在SHS上呈现Cassie状态的重要因素.  相似文献   

10.
羊毛表面改性对拒水拒油整理的作用及机理研究   总被引:1,自引:0,他引:1  
应用扫描电镜(SEM)、X射线光电子能谱(XPS)和衰减全反射红外光谱(FTIR-ATR)等现代表面分析技术研究不同改性处理羊毛表面的化学和物理结构特性.SEM研究结果表明,经低温等离子体表面改性或特定化学改性后的羊毛鳞片表面呈现纳米尺度的沟槽和凹凸结构,应用Wenzel公式和Cassie and Baxter公式阐述了表面粗糙度与接触角的关系,揭示了羊毛表面改性对于提高拒水拒油整理效果的原因所在.XPS和FTIR-ATR研究表明,上述物理和化学的表面改性技术使羊毛表面的二硫键氧化断裂和表面类脂物质改性/除去,促进拒水拒油整理剂的吸附和固着.表面改性和拒水拒油整理的协同效应赋予羊毛类荷叶效应,使其呈现超级拒水拒油拒污功能.  相似文献   

11.
Macroporous polystyrene/divinylbenzene (PS‐DVB) monoliths were obtained using highly concentrated W/O emulsions as templates. These monoliths are of interest due to the high potential applications for catalysis, scaffolds for tissue engineering, filters, membranes, or drug delivery systems. Dynamic wetting behavior through the polymer monolith is directly related to contact angle. For this reason, in this paper we investigate the relationship between contact angle, morphology, and chemical composition of the dense skin layer and the highly porous interior surface of PS‐DVB porous monoliths. Whereas the dense skin layer exhibits a Wenzel regime using water as wetting liquid, the highly porous interior surface exhibits a Cassie–Baxter regime. This behavior is correlated with the roughness observed by scanning electron microscopy (SEM). However, the observed contact angle hysteresis seems to indicate that factors other than surface roughness should be taken into account. For this reason, chemical composition was also studied by elemental microanalysis and X‐ray photoelectron spectroscopy (XPS). The differences in chemical composition observed between the dense skin layer and the highly porous interior surface, according to the wetting model for a heterogeneous surface proposed by Johnson and Dettre, seems also to contribute to the wetting hysteresis. The different wetting between the dense skin layer and the highly porous interior surface results in a dual wettability phenomenon, in which a liquid wets the dense skin layer and does not penetrate into the highly porous interior of the PS‐DVB monoliths. This phenomenon can be of relevance in absorption or desorption processes such as in drug delivery processes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The present work aims to contribute to the understanding at a molecular level of the origin of the hydrophobic nature of surfaces exhibiting roughness at the nanometer scale. Graphite-based smooth and model surfaces whose roughness dimension stretches from a few angstroms to a few nanometers were used in order to generate Cassie and Wenzel wetting states of water. The corresponding solid-liquid surface free energies were computed by means of molecular dynamics simulations. The solid-liquid surface free energy of water-smooth graphite was found to be -12.7 ± 3.3 mJ/m(2), which is in reasonable agreement with a value estimated from experiments and fully consistent with the features of the employed model. All the rugged surfaces yielded higher surface free energy. In both Cassie and Wenzel states, the maximum variation of the surface free energy with respect to the smooth surface was observed to represent up to 50% of the water model surface tension. The solid-liquid surface free energy of Cassie states could be well predicted from the Cassie-Baxter equation where the surface free energies replace contact angles. The origin of the hydrophobic nature of surfaces yielding Cassie states was therefore found to be the reduction of the number of interactions between water and the solid surface where atomic defects were implemented. Wenzel's theory was found to fail to predict even qualitatively the variation of the solid-liquid surface free energy with respect to the roughness pattern. While graphite was found to be slightly hydrophilic, Wenzel states were found to be dominated by an unfavorable effect that overcame the favorable enthalpic effect induced by the implementation of roughness. From the quantitative point of view, the solid-liquid surface free energy of Wenzel states was found to vary linearly with the roughness contour length.  相似文献   

13.
Superhydrophobicity is obtained on photolithographically structured silicon surfaces consisting of flat-top pillars after a perfluorosilanization treatment. Systematic static contact angle measurements were carried out on these surfaces as a function of pillar parameters that geometrically determine the surface roughness, including pillar height, diameter, top perimeter, overall filling factor, and disposition. In line with thermodynamics models, two regimes of static contact angles are observed varying each parameter independently: the "Cassie" regime, in which the water drop sits suspended on top of the pillars (referred to as composite), corresponding to experimental contact angles greater than 140-150 degrees, and the "Wenzel" regime, in which water completely wets the asperities (referred to as wetted), corresponding to lower experimental contact angles. A transition between the Cassie and Wenzel regimes corresponds to a set of well-defined parameters. By smoothly depositing water drops on the surfaces, this transition is observed for surface parameter values far from the calculated ones for the thermodynamic transition, therefore offering evidence for the existence of metastable composite states. For all studied parameters, the position of the experimental transition correlates well with a rough estimation of the energy barrier to be overcome from a composite metastable state in order to reach the thermodynamically favored Wenzel state. This energy barrier is estimated as the surface energy variation between the Cassie state and the hypothetical composite state with complete filling of the surface asperities by water, keeping the contact angle constant.  相似文献   

14.
Solid–liquid–vapor interfaces dominated by the three‐phase contact line, usually performing as the active center in reactions, are important in biological and industrial processes. In this contribution, we provide direct three‐dimensional (3D) experimental evidence for the inside morphology of interfaces with either Cassie or Wenzel states at micron level using X‐ray micro‐computed tomography, which allows us to accurately “see inside” the morphological structures and quantitatively visualize their internal 3D fine structures and phases in intact samples. Furthermore, the in‐depth measurements revealed that the liquid randomly and partly located on the top of protrusions on the natural and artificial superhydrophobic surfaces in Cassie regime, resulting from thermodynamically optimal minimization of the surface energy. These new findings are useful for the optimization of classical wetting theories and models, which should promote the surface scientific and technological developments.  相似文献   

15.
通过在线跟踪水滴在凹槽状聚二甲基硅氧烷(PDMS)基底上的挥发行为, 研究了蒸馏水的挥发规律Cassie-Wenzel转变行为. 结果表明, 初始阶段, 水滴处于Cassie状态, 且在垂直于凹槽方向(V)和平行于凹槽方向(P)上存在显著的各向异性. 水滴的挥发过程依次表现出接触直径不变模式、 接触角不变模式及共同减小模式, 与平滑基底上水滴的挥发规律类似. 在挥发过程中, 发生了Cassie-Wenzel转变, 转变发生的时间与PDMS基底上突起部分的面积分数(即固相率)呈现良好的线性关系. 随着挥发的进行, 水滴的各向异性在接触角不变模式阶段消失, 即挥发导致水滴从开始的椭球缺状变为球缺状.  相似文献   

16.
Contact angle (CA) hysteresis is the difference between the maximum (advancing) and minimum (receding) water CA. Hysteresis is caused by adhesion hysteresis in the solid–water contact area (2D effect) and by pinning of the solid–water–air triple line due to the surface roughness (1D effect). In this work, we show that CA hysteresis is present also in more complex systems, such as an organic liquid (oil) in contact with a solid immersed in water. In order to decouple the 1D and 2D effects, we study CA hysteresis in solid–water–air (droplet), solid–air–water (bubble), solid–water–oil, and solid–water–air–oil systems involving rough and microstructured surfaces. The comparative analysis of these systems allows decoupling the 1D and 2D effects as well as hydrogen bonding and entropic forces (water–air tension) and dispersion forces (oil–air tension).  相似文献   

17.
The classical Wenzel and Cassie models fail to give a physical explanation of such phenomenon as the macroscopic contact angle actually being equal to the Young's contact angle if there is a spot (surface defect) inside the droplet. Here, we derive the expression of the macroscopic contact angle for this special substrate in use of the principle of least potential energy, and our analytical results are in good agreement with the experimental data. Our findings also suggest that it is the triple contact line (TCL) rather than the contact area that dominates the contact angle. Therefore a new model based upon the TCL pinning is developed to explain the different wetting properties of the Wenzel and Cassie models for hydrophilic and hydrophobic cases. Moreover, the new model predicts the macroscopic contact angle in a broader range accurately, which is consistent with the existing experimental findings. This study revisits the fundamentals of wetting on rough substrates. The new model derived will help to design better superhydrophobic materials and provide the prediction required to engineer novel microfluidic devices.  相似文献   

18.
Wetting behavior of a SiO(2)-polystyrene nanocomposite surface   总被引:1,自引:0,他引:1  
A SiO(2)-polystyrene (PS) nanocomposite surface was prepared with a simple method. The wetting behavior of the as-prepared surface was investigated. It was found that the as-prepared surface could be varied from superhydrophilicity to superhydrophobicity just by controlling the drying temperature and the content of SiO(2) nanoparticles in the system. In addition, a transition from the Wenzel regime to the Cassie regime was observed.  相似文献   

19.
Theoretical modelling for contact angle hysteresis carried out to date has been mostly limited to several idealized surface configurations, either rough or heterogeneous surfaces. This paper presents a preliminary study on the thermodynamics of contact angles on rough and heterogeneous surfaces by employing the principle of minimum free energy and the concept of liquid front. Based on a two-dimensional regular model surface, a set of relations were obtained, which correlate advancing, receding and system equilibrium contact angles to surface topography, roughness and heterogeneity. It was found that system equilibrium contact angles (theta(ES)) can be expressed as a function of surface roughness factor (delta) and the Cassie contact angle (theta(C)): costheta(ES) = deltacostheta(C). This expression can be reduced to the classical Wenzel equation.: theta(ES) = theta(W) for rough but homogeneous surfaces, and the classical Cassie equation theta(ES) = theta(C) for heterogeneous but smooth surfaces. A non-dimensional parameter called surface feature factor (omega) was proposed to classify surfaces into three categories (types): roughness-dominated, heterogeneity-dominated and mixed-rough-heterogeneous. The prediction of advancing and receding contact angles of a surface is dependent on which category the surface belongs to. The thermodynamic analysis of contact angle hysteresis was further extended from the regular model surface to irregular surfaces; consistent results were obtained. The current model not only agrees well with the models previously studied by other researchers for idealized surfaces, but also explores more possibilities to explain the reported experimental results/observations that most existing theories could not explain.  相似文献   

20.
Electrowetting (EW) is a powerful tool to control fluid motion at the microscale and has promising applications in the field of microfluidics. The present work analyzes the influence of an electrowetting voltage in determining and altering the state of a static droplet resting on a rough surface. An energy-minimization-based modeling approach is used to analyze the influence of interfacial energies, surface roughness parameters, and electric fields in determining the apparent contact angle of a droplet in the Cassie and Wenzel states under the influence of an EW voltage. The energy-minimization-based approach is also used to analyze the Cassie-Wenzel transition under the influence of an EW voltage and estimate the energy barrier to transition. The results obtained show that EW is a powerful tool to alter the relative stabilities of the Cassie and Wenzel states and enable dynamic control of droplet morphology on rough surfaces. The versatility and generalized nature of the present modeling approach is highlighted by application to the prediction of the contact angle of a droplet on an electrowetted rough surface consisting of a dielectric layer of nonuniform thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号